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Abstract

This paper examines how decision making under uncertainty is a�ected by
the presence of a background risk. By background risk, we refer to a risk for
which there is no market for trading or hedging. In particular, we construct
a class of background risks that we label as risk-taking-neutral (RTN). These
background risks have the property that they will not alter the choice de-
cisions made with respect to another risk. As such, these RTN background
risks can provide a benchmark. In many situations, a background risk that is
faced by an investor can be compared to one from the RTN class in order to
predict qualitative changes in the investor's choice decision. In particular,
we illustrate our benchmarking with three examples with regards to portfolio
choice: (1) e�ects of a 
at-rate income tax, (2) e�ects of an independent non{
positive-mean background risk, and (3) a theorem about dynamic investing
due to Mossin (1968a).

Keywords: background risk, HARA utility, income tax, portfolio choice,
risk vulnerability

JEL classi�cation: D81,G11



RTN Background Risk 1

.

1 Introduction

Consider an individual who must make an economic decision in the face of
risk. For example, the individual might be an investor deciding on how
to allocate wealth between a risky and a riskfree asset. Alternatively, the
individual might be deciding on how to insure or how to otherwise hedge a
risky asset. Typically, such a decision is modeled in isolation, where there is
only the one source of risk. For the sake of clarity, we will refer to this risk
as the "primary risk." However, more realistically, there are other risks that
are also faced by the individual. One type of such risk is often referred to as
a "background risk," meaning that there is no market for trading directly on
this second risk. One question that has been given considerable attention
in the literature is "how does the presence of this background risk a�ect
behavior towards the primary risk?" Obviously, many types of dependence
between the risks might be indirectly treated via trading on the primary risk.
For example, contracts on the primary risk might partially mitigate e�ects
of the background risk via "cross hedging" techniques. However, even in
cases where such techniques are not possible, such as when the two risks
are independent, it is now well known that a background risk can still a�ect
decisions about the treatment of the primary risk.1

1This line of research began with Kihlstrom et al. (1981), Ross (1981) and Nachman
(1982). These papers all considered one individual who was more risk averse than an-
other with resepect to the primary risk and examined whether the individual remained
more risk averse (with respect to the primary risk) in the presence of such a background
risk. Doherty and Schlesinger (1983) showed how such a background risk might a�ect an
individual's decision towards the primary risk. Good summaries of how such background
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For example, one might hypothesize that an independent background risk
with a non-positive mean will lead to less risk taking with respect to the
primary risk. However, as shown by Gollier and Pratt (1996), risk aver-
sion alone is not su�cient to guarantee such behavior. Preferences that
do guarantee such behavior are labeled as "risk vulnerable" by Gollier and
Pratt (1996), who also derive the tedious necessary and su�cient conditions
that lead to such behavior. Luckily, relevant su�cient conditions are much
easier to satisfy. A few papers have looked at cases where the two risks are
not independent, but these cases are usually very restrictive.2 As another
illustration, consider investment decisions modelled in a world without taxes.
How would the inclusion of an income tax a�ect investment strategy?

In this paper, we construct a class of background risks for an individual with
the property that they will not a�ect an individual's decision making on the
primary risk. In particular, we construct this class of background risks,
which we label as "risk-taking-neutral background risk," for expected-utility
preferences with so-called "hyperbolic absolute risk aversion" (HARA). The
closure of the HARA class of utility includes most all of the commonly used
utility functions, including constant absolute risk aversion (CARA), constant
relative risk aversion (CRRA) and quadratic utility. The importance of this
class within �nance includes it's equivalence to the set of utility functions
allowing for two-fund separation in portfolio choice, as shown by Cass and
Stiglitz (1970). Moreover, the HARA class of utility allows for dynamic
portfolio choices to be made somewhat myopically, "as if" future period re-
turns were all risk-free. See Mossin (1968a) and Gollier (2001). Indeed, we
will prove Mossin's (1968a) main result later in the paper, as an example of
risk-taking-neutral background risk.

The terminology "background risk" is actually a bit more narrow than our
construction, since we also allow for deterministic transformations of wealth.
But since these "deterministic transformations" are themselves risky, since
they vary with wealth, we still refer to them as a background risk. Al-
though this class of RTN background risks is fairly simple to construct, such
background risks need not resemble the types of background risks that might

risks embed into economic and �nancial decisions can be found in Campbell and Viceira
(2002) and Gollier (2001).

2See, for example, Dana and Scarsini (2007).
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occur naturally within an economy. However, these RTN background risks
can serve as a benchmark. That is, in many situations, a canonical type
of background risk can be compared to a member of the RTN class in such
a way as to predict qualitative changes in risk-taking behavior towards the
primary risk. Indeed, it might be more di�cult to compare this canonical
background risk directly with no background risk. The comparison with a
suitably chosen RTN background risk might make economic analysis much
simpler.

We begin the next section with a description of our class of RTN background
risks within the class of HARA utility. We next show how several examples
of background risks can be analyzed via comparison to our RTN class of
background risks. In particular, we examine portfolio choice in a few di�erent
settings. We �rst examine the e�ect of an income tax on optimal portfolio
choice and show how it can be easily modelled using our RTN background
risk. The result is also robust to having a tax rate that is random in the
sense of being unknown at the time investment decisions are made. We next
consider an independent, non-positive-mean background risk, as in Gollier
and Pratt (1996). By choosing an appropriate RTN background risk, which
by de�nition does not a�ect investment decisions, we can easily show the
logic behind the Gollier and Pratt result. Finally, we show how a famous
result about dynamic portfolio choice, due to Mossin (1968a), follows in
straightforward manner using RTN background risk.

2 Risk-Taking-Neutral Background Risk

Consider a risk-averse individual with random wealth ex (the "primary risk")
who maximizes her expected utility of terminal wealth . We assume that util-
ity belongs to the so-called hyperbolic-absolute-risk-aversion (HARA) class
of utility, where we can express utility as

u(x) =
1

B � 1(A+Bx)
1� 1

B ; (1)
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where B 6= 0, B 6= 1 and A+Bx > 0. Risk tolerance for this class of utility
is linear:

�u0(x)
u00(x)

= A+Bx: (2)

Note that this class of utility includes constant relative risk aversion (A = 0)
and quadratic utility (B = �1). It also is straightforward to show, using
L'Hospital's rule, that such utility approaches constant-absolute-risk-aversion
(CARA) utility as B ! 0, u(x) = �e�kx, with k = 1

A
. Also, utility

approaches log utility, u(x) = lnx, if A = 0 and B ! 1.

We assume that the random wealth ex is endogenous in that the individual
can engage in market activity a�ecting the distribution of terminal wealth.
For the sake of concreteness, we will use the case where the individual allo-
cates her wealth between a risky asset and a riskfree asset. From standard
portfolio-choice analysis, we know that a risk-averse individual always invests
a positive amount in the risky asset if and only if its expected payo� per dol-
lar invested is higher than the payo� on the riskfree asset. Moreover, a
more risk-averse individual would always invest less in the risky asset, ceteris
paribus.

We now suppose that the investor faces a second risk ez, the so-called "back-
ground risk" for which there is no market available for trading and/or hedg-
ing. Final wealth is denoted as ex+ez. The question addressed in this paper is
whether or not we can predict that the individual take less [or more] risk with
respect to the primary risk ex in the market in the presence of background
risk ez.
To facilitate answering such a question, we de�ne the class of risk-taking-
neutral (RTN) background risks to be any risk of the following form

ez(x) = (k + e")(A
B
+ x); (3)

where k 2 R and the random variable e" is statistically independent of the
random variable ex, with Ee" = 0, where E denotes the expectation operator.
We further require that 1 + k + " > 0 for all values of ". Note that we
allow for the possibility that e" is degenerate, with variance zero. Althoughe" and ex are statistically independent by assumption, e" and ez are statistically
dependent by construction.
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It is important to note that our construction of ez is parametric, based on
the parameters in the decision maker's utility function u. It is also impor-
tant to note that only the ratio A

B
matters in our construction. This is

important since our de�nition of HARA in (1) is unique only up to an a�ne
transformation of u.

To see the e�ect of ez on decisions made about the primary risk ex, we consider
the so-called derived utility function3 for an arbitrary background risk ez:

v(x) � Eu(x+ ez): (4)

For ez belonging to the RTN class of background risk, we obtain
v(x) = E

�
1

B � 1((A+Bx)(1 + k + e"))1� 1
B

�
= E(1+ k+ e"))1� 1

B �u(x): (5)

Since e" is statistically independent of ex, decisions made about the primary
risk ex in the presence of background risk are identical to decisions on ex
without background risk, but using the derived utility function v in place of
u. That is

Eu(ex+ ez) = Ev(ex) = E(1 + k + e")1� 1
B � Eu(ex); (6)

where E(1 + k + e")1� 1
B is a positive constant.

In any decision problem about ex, we can interpret the �rst-order conditions as
setting marginal bene�ts equal to marginal costs, for changes in the decision
variable, where bene�ts and costs are given in terms of marginal utility.
Since both marginal bene�ts and marginal costs are simply scaled by the
common multiplicative factor E(1 + k + e")1� 1

B in the presence of ez, the
optimal decision remains unchanged. It is important to note that we are
not claiming that preferences are una�ected by ez. If E(1 + k + e")1� 1

B < 1,
then the individual is worse o� when background risk ez is present. If the
inequality is reversed, the individual is better o�. However, decisions made
about ex are not a�ected whether ez is present or not, hence our terminology
"risk-taking-neutral background risk."

3See Kihlstrom et al. (1981), who refer to this function as the indirect utility function,
and Nachman (1982). Note also that this background risk contains a mixture of an
additive and multiplicative background risk, as described by Franke et al. (2011).
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The types of background risks a decision might typically face are not likely
to belong to the class of risks given by (3) above, although we will show
later that they sometimes might be. The main purpose in de�ning our
class of RTN background risks is to provide a benchmark. By appropriately
choosing a member of the RTN class, one might be able to make a simple
comparison with an actual background risk to qualitatively determine how
decisions will change. In other words, comparing a decision under an actual
background risk might be easier against an RTN background risk than against
no background risk. And the latter two yield the same optimal decisions.
The rest of the paper provides a few examples of how RTN background risks
can be used in di�erent settings.

3 Portfolio Choice and Taxes

In this section, we show how our RTN background risks can be used to re-
examine an age-old problem in public �nance: the question of how taxes
a�ect investment in risky assets. Although there has been much research on
the e�ects of taxes on portfolio choice over the years, most of it has focussed
on the e�ects of di�ering tax rates for di�erent asset classes. But some
early research has focused on the e�ects of a simple 
at-rate income tax on
portfolio choice. Here we consider a theoretical model where there is a �xed
tax rate on one's income. We show why, under fairly broad circumstances,
an income tax will increase the investment in the risky asset. We then
extend our results to the case where the tax rate is uncertain at the time
portfolio choices are made.

Domar and Musgrave (1944) were the �rst to consider the problem. They
argued, against conventional wisdom at the time, that income taxes were
most likely to increase investment in risky assets, rather than decrease it.
The basic model was formalized in an expected-utility setting by Mossin
(1968b) and by Stiglitz (1969).4

For the sake of clarity, we consider a particular choice problem; namely the

4See Sandmo (2010) for an excellent summary, discussion and extension of these early
results.
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choice of allocating wealth between a risky and a riskfree asset. To this
end, let w denote the initial wealth of the individual who must decide on the
amount of wealth a to invest in the risky asset, with the remaining wealth
w� a invested in the riskfree asset. The gross return on the riskfree asset is
denoted as Rf � 1, whereas the risky asset's gross return is denoted by the
random variable eR, where we assume that eR � 0 and E eR > Rf . This last
assumption guarantees that the optimal investment in the risky asset a� will
be strictly positive. Note that, unlike in Mossin (1968a), we do not restrict
Rf = 1.

To implement our analysis, consider the following RTN background "risk":
z(x) = �t(A

B
+ x), where 0 < t < 1. In other words, we let e" be identically

zero and de�ne k � �t. Since 0 < t < 1, our constraint that (1+k+")1� 1
B >

0 is trivially satis�ed. We assume for now that B > 0. Obviously, in this
example z is not random for a �xed level of wealth x: But since z(ex) varies
with ex, we will still refer to z as a RTN "background risk," since z satis�es
our de�nition (3). In this case we obtain

Eu(ex+ ez) = (1� t))1� 1
B � Eu(ex): (7)

Note that we can write total random wealth in this case as

ex+ ez = ex(1� t)� tA
B
: (8)

Recall that, by construction, as is clear from (7), the optimal choice of invest-
ment in the risky asset a� is the same both with and without the background
risk ez.
Consider �rst the case of a wealth tax, with tax rate t. That is, the individual
must pay a �xed percent of her �nal wealth as a tax. Using (8) we can write
after-tax wealth as follows:

ex(1� t) = (ex+ ez) + tA
B
: (9)

First consider the case where A = 0, so that we have CRRA. In this case,
we see that ex(1 � t) = (ex + ez), so that there is no e�ect of a wealth tax on
the optimal optimal portfolio choice. That is, the optimal investment in the
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risky asset a� is unchanged by the wealth tax. This e�ect is as expected
under CRRA since wealth is reduced proportionally at every �nal wealth
level.

Now suppose that A > 0. We can proceed in two steps: (1) First note that
changing wealth from ex to ex + ez will not a�ect the optimal choice of risky
investment a�, since ez is RTN. (2) Second, if we add the positive constant tA

B

to every wealth level, it will increase the optimal risky investment a�, since
B > 0 implies that absolute risk aversion is decreasing (DARA). Hence, the
total e�ect of the wealth tax is to increase investment in the risky asset. This
two-step procedure makes full use of our RTN background risk set-up, since
the second step does not require us to compare a situation with the tax to
one with no tax; rather we compare after-tax wealth to the RTN alternativeex+ ez.
At �rst thought, it might seem like this result is simply due to DARA.
However the result does not hold in general for any DARA utility, unless
it belongs to the HARA class. Moreover consider the case where we allow
B < 0, such as the case with quadratic utility (B = �1). Since A+Bx > 0,
we obviously must have A > 0. In this case, we have increasing absolute
risk aversion. Now the term tA

B
in (9) above is negative; but due to the

increasing risk aversion, it follows from the above reasoning that we once
again have an increase in the investment in the risky asset, a�.

But what happens if A < 0?5 Since we must have B > 0, we once again
have DARA. However, in this case tA

B
< 0. Thus, it follows from (9) and

step (2) above that investment in the risky asset will actually decrease with
the wealth tax. Thus we see that for DARA, B > 0, the e�ect of a wealth
tax depends critically on whether A > 0, A = 0, or A < 0. These results
illustrate a Proposition of Stiglitz (1969, Proposition 1a) that a proportional
wealth tax will increase [not change; decrease] investment in the risky asset
if we have increasing [constant; decreasing] relative risk aversion.

Suppose now that instead of a wealth tax, we have a 
at rate income tax,
with the same tax rate t. We do assume, as in Domar and Musgrave (1944)
and in Mossin (1968b), that there is a full loss o�set for losses. In this case,

5Note that, for HARA preferences A < 0 corresponds to preferences exhibiting decreas-
ing relative risk aversion, whereas A > 0 corresponds to increasing relative risk aversion.
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since the tax is only on earned income and not on the initial wealth w as well,
it follows from (8) that we can write after-tax wealth as simply refunding the
tax on initial wealth in equation (9)

ex(1� t) + tw = (ex+ ez) + t(A
B
+ w): (10)

We see from (10) that after-tax wealth di�ers from the case of a wealth tax
only by the positive constant tw. Suppose that we once again restrict B > 0,
so that we have DARA. If we also have A > 0, it follows that a� will be
higher than it would be with no tax. Indeed, the investment in the risky
asset is even higher than it would be in the case where t was a tax on total
wealth, not just on income. But reconsider now the case where A < 0. Since
A + Bw > 0 by assumption, the term t(A

B
+ w) must be positive. Hence

investment in the risky asset will increase. Even though a 
at-rate wealth
tax of t would lessen the investor's investment in the risky asset, a 
at-rate
income tax of t would increase such investment.

For the case where B < 0, with increasing absolute risk aversion, whether
a� is lower or higher than with no tax once again depends upon the sign of
t(A
B
+w). But since we restrict A+Bx > 0 for all x, the term t(A

B
+w) must

be negative when B < 0. Hence, a 
at-rate income tax will cause a� to rise
in this case as well, compared to the case with no tax. However, increasing
absolute risk aversion implies that the extra investment in the risky asset will
be less with the income tax than it would with a proportional wealth tax.

Note that unlike Mossin, we did not assume that the riskfree rate was zero.
Our income tax thus applies not only to returns above a riskfree return,
but rather to the riskfree interest as well. Although with an unspeci�ed
utility representation, the tax on the riskfree interest can cause problems, as
described by Sandmo (2010), our speci�cation that A+Bx > 0 resolves such
issues in the current setting.

Next, we show that more is invested in the risky asset even when the tax
rate is random. To this end, let e" be a zero-mean random variable that is
statistically independent from portfolio returns. For any realized value of
", t + " denotes the tax rate. We further assume that 0 < t + e" < 1 with
probability one. The problem facing the investor is that she must allocate
her wealth between the risky and the riskfree asset prior to observing the
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realization of e". In this case, it follows from the above analysis that more
wealth is invested in the risky asset than would be invested with no taxes.
To see this, consider the objective of the investor without taxes, which is to
choose a to maximize expected utility :

maxEu(ex(a)) � Eu(wRf + a( eR�Rf )) = Z 1

0

u(wRf + a(R�Rf ))dF (R);
(11)

where F denotes the distribution function for risky returns.

For a �xed tax rate t+ " de�ne U(a; ") � Eu(ex(a)(1� (t+ ")) + tw) as the
investor's expected utility, net of her 
at-rate income tax, for a given a and
a given ". The �rst-order condition for the optimal investment at this �xed
tax rate is

@U(a; ")

@a
= 0, (12)

which we assume to be satis�ed at investment level a". It is easy to show
that U(a; ") is concave in a for all values of a { not just at the optimal a�
From our analysis above, we know that for any " such that 0 < t+ " < 1 we
must have a" > aN , where aN denotes the optimal investment in the risky
asset when there are no taxes. This in turn implies that @U(a;")

@a
> 0 when

evaluated at aN for every ", due to the concavity of U(a; ").

For a random tax rate t + e", the �rst-order condition for portfolio choice
becomes Z +1

�1

@U(a; ")

@a
dG(") = 0, (13)

where G denotes the distribution function for e". Let a� denote the solution
to (13). We cannot have a� � aN , since this would imply that @U(a;")@a

> 0 for
every ", so that (13) cannot hold. Hence, more is invested in the risky asset
with the random income tax than would be invested with no tax, a� > aN .

Finally, we note that the methodology used above for a random income-tax
rate would also apply for a random wealth tax, so long as we maintain our
assumption that 0 < t+ " < 1. Indeed, one can easily see how other similar
scenarios are possible. For example, this methodology will also apply if we
have random in
ation that is independent of risky-asset returns. We just
need to use a price de
ator in place of a proportional wealth-tax rate (as
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long as we allow only for in
ation, with no chance of de
ation, i.e. as long
as the price de
ator remains larger than unity). This allows us to conclude
under HARA that, compared to the case with no in
ation, a random rate of
in
ation will cause the investor to increase [not change; decrease] investment
in the risky asset if we have increasing [constant; decreasing] relative risk
aversion.6

4 Portfolio Choice and Risk Vulnerability

We now consider the risk vulnerability model in Gollier and Pratt (1996).
They consider a background risk ey with a non-positive mean that is in-
dependent of random wealth. They examine conditions under which this
background induces less risk taking behavior. In the context of our portfolio
problem, this would imply reducing investment in the risky asset. Although
the conditions on preference that are equivalent to inducing this type of
behavior are quite strong, Gollier and Pratt also present two su�cient condi-
tions for this behavior, both of which are satis�ed by HARA utility whenever
B > 0.7 However, even these su�cient conditions are not particularly easy
to interpret in terms of economic intuition. By choosing an appropriate
RTN background risk, we show below that the Gollier-Pratt independent
background risk is larger in the low-return states and smaller in the high-
return states of nature. The intuition as to why investment in the risky
asset decreases then becomes apparent.

To set up this argument, note that the �rst-order condition to (11) under

6Of course, this is a very simpli�ed model of in
ation. See, for example, Brennan and
Xia (2002) for a more complex model, similar in spirit to the result shown here.

7One su�cient condition for risk vulnerability is that preferences satisfy "standard risk
aversion," as de�ned by Kimball (1993), which is characterized by decreasing absolute risk

aversion and decreasing absolute prudence. That is, both absolute risk aversion �u00(x)
u0(x)

and absolute prudence �u000(x)
u00(x) are decreasing in x. Another su�cient condition is that

absolute risk aversion is both decreasing and convex in wealth.
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HARA can be written as follows:

0 = E[(A+Bex(a))� 1
B ( eR�Rf )]

�
R Rf
0
(A+Bx)�

1
B (R�Rf )dF (R)+

R1
Rf
(A+Bx)�

1
B (R�Rf )dF (R)

;

(14)
where x(a) � wRf + a(R � Rf ). We assume that (14) is satis�ed at some
positive �nite value a�. Note that the �rst integral on the left-hand side in
(14) is negative, representing the marginal utility cost of a higher a when re-
turns are low, whereas the second term is positive, representing the marginal
utility bene�t of a higher a when returns are high. The su�cient second-
order condition for a maximum is trivially satis�ed, since expected utility is
concave in a.

If we add any RTN background risk of the form (3), since e" is independent
of R, the �rst-order condition becomes

0 = E(1 + k + e")1� 1
BE[(A+Bex)� 1

B ( eR�Rf )]
= E[(1 + k + e")(1 + k + e")� 1

B ]E[(A+Bex)� 1
B ( eR�Rf )]

= [1 + k + cov(e"; (1+k+e")� 1
B )

E(1+k+e")� 1
B

]E(1 + k + e")� 1
BE[(A+Bex)� 1

B ( eR�Rf )]
= [1 + k + cov(e"; (1+k+e")� 1

B )

E(1+k+e")� 1
B

]E[(A+B(ex+ ez))� 1
B ( eR�Rf )]:

(15)

Our assumption that 1 + k + " > 0 implies that the constant �rst term on
the left-hand side of the last line in (15) must be positive. Hence, we can
re-write the �rst-order condition asR Rf

0

R +1
�1 ((A+B(x+ z))

� 1
B (R�Rf )dG(")dF (R)

+
R1
Rf

R +1
�1 ((A+B(x+ z))

� 1
B (R�Rf )dG(")dF (R) = 0,

(16)

where G once again denotes the distribution function for e". From our pre-
vious argument about RTN background risk, this yields the same optimal
investment in the risky asset, a� as would hold with no background risk from
(14).

To examine the risk-vulnerability result of Gollier and Pratt (1996), consider
their independent non-positive mean background risk ey. Note that we can
de�ne e" independent of eR with Ee" = 0 and de�ne k � 0 implicitly via

ey = (k + e") �A
B
+ wRf

�
: (17)
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Using this e" and this k in (3), so that ez = (k + e") �A
B
+ x

�
, we see that ez

simply replaces wRf with x when compared to ey. Thinking of (k + e") as
noise, we see that ey has more noise than ez when returns are low (R < Rf )
and that ey has less noise than ez when returns are high (R > Rf ).
Since we assume B > 0, it follows thatZ +1

�1
((A+B(x+ y))�

1
B dG(") > [<]

Z +1

�1
((A+B(x+ z))�

1
B dG(")

for each R < [>]Rf . This follows since u0 is decreasing and convex. The
fact that u0 is decreasing allows us compare the deterministic parts of ey andez, i.e. to compare the terms with k. The fact that u0 is convex allows us
to use Jensen's inequality to compare the stochastic parts of ey and ez, i.e.
to compare the terms containing e". To see this more clearly, note that the
multiplicative factor on the e" term is either wRf or wealth x; and since a�
is positive, the latter term is larger if and only if R > Rf .

Calculating dEu
da

as in (16) but with y replacing z, it follows that the nega-
tive term (marginal costs) is more negative and the positive term (marginal
bene�t) is less positive, when evaluated at a�. Hence, the optimal level of
investment in the risky asset will fall, as expected. In other words, com-
pared to its risk-taking-neutral counterpart, which changes marginal utility
by a proportional amount everywhere, the independent background risk ey
increases marginal utility (and hence increases marginal costs) when returns
are low and it decreases marginal utility (and hence decreases marginal ben-
e�ts) when returns are high.

5 Mossin's Partial Myopia

Mossin (1968b) considers a simple two-period dynamic portfolio problem
under HARA preferences. The investor decides at date t = 0 how to invest
her wealth in a portfolio. At the end of the �rst period, at date t = 1,
the investor can than optimally reinvest her realized wealth in a risky asset
and/or a riskfree asset. At the end of the second period, at date t = 2,
the investor then realizes and consumes her �nal wealth. We assume that
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returns on the risky asset are statistically independent in each period and
that riskfree rate a date t = 1, i.e. Rf , is known by the investor at date
t = 0.

The standard approach to solving such a problem requires a method such
as dynamic programming and solving the program "backwards" in time.
However, Mossin shows that the �rst-period investment decision can actually
be solved assuming that one hundred percent of wealth will be invested in
the riskfree asset at date t = 1, which Mossin's calls "partial myopia." Of
course, in the special case where Rf = 1 at date t = 1, such as assumed in
Gollier (2001), we then have complete myopia: the investment in the �rst
period is the same as if no second period investment was available.

To establish Mossin's result using RTN background risk, we require the fol-
lowing Lemma, which is a well-known result and is proven, for example, in
Gollier(2001, p. 58).

Lemma: Consider the solution to the standard portfolio problem (11) when
preferences exhibit HARA. Let ba denote the solution to

E[(1 +Bba( eR�Rf ))� 1
B ( eR�Rf )] = 0:

Then the solution to (11) satis�es a� = ba(A+BwRf ).
We can now prove Mossin's result.

Theorem (Mossin): Consider the two-period investment problem under
HARA utility. At date t = 0 the investor chooses an investment in the risky
asset that is identical to the one she would choose if all wealth at date t = 1
was invested in the riskfree asset.

Proof: Suppose the investor chooses her investment in the risky asset, a0,
at date t = 0 under the assumption that all wealth is re-invested at the
riskfree rate. Let ew1 be a random variable denoting her wealth at date t = 1
under this investment strategy. Now, consider a change in her re-investment
strategy to account for the opportunity to invest in a risky asset at date
t = 1. We let eR2 denote the risky return for this risky asset and assume it
is independent from the distribution of �rst-period returns, i.e. we assume
that ew1 and eR2 are statistically independent random variables.

From the Lemma, it follows that the optimal re-investment in the risky asset
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at date t = 1 is a1 = ba(A + Bw1Rf ) for any realized wealth w1. Viewed at
date t = 0, the investor's random wealth at date t = 2 is thus

ew2 = ew1Rf + a1( eR2 �Rf )
= ew1Rf + ba(A+B ew1Rf )( eR2 �Rf ): (18)

Compared to investing all proceeds in the riskfree asset, the additional risk for
this re-investment strategy is thus [ba( eR2�Rf )](A+B ew1Rf ). Since ew1 and eR2
are independent, this additional risk is easily seen to be a RTN background
risk of the form ez(x) = (k + e")(A

B
+ x), with x � w1Rf , e" � baB( eR2 � E eR2)

and k � baB(E eR2 � Rf ). Hence, at date t = 0, maintaining the strategy of
investing a0 in the risky asset is still optimal. Q.E.D.

8

It is interesting to note that we have no background risks in Mossin's setting.
Rather, we viewed ew1Rf as being optimal when future investment was all
riskfree, and then simply observed that allowing for future risky investment
looked no di�erent than adding a RTN background risk.

6 Concluding Remarks

We de�ned a parametric class of background risks for HARA utility that
we call the class of risk-taking-neutral (RTN) background risks. These
background risks a�ect overall satisfaction, but do not alter economic choices.
In some cases, such as Mossin's Theorem on partial myopia, we were able to
show the result by directly linking wealth to a particular RTN background
risk. In other cases, we were able to choose a particular RTN, and then
easily compare an extant background risk to our chosen RTN counterpart.

We should also say a word here about the limiting cases under HARA. If
B = 0 or B = 1, the HARA utility as given in (1) is not well de�ned.
However, standard limit arguments easily show that these two cases approach
constant absolute risk aversion utility and log utility respectively.9 As shown

8Note that for the special case of constant relative risk aversion (CRRA), which requires
A = 0, we obtain complete myopia. This follows easily from the Lemma since a1 is then
simply a multiple of w1, so that a1=w1 is constant, as is well known from Merton (1971).

9See, for example, Ingersoll (1987).
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by Cass and Stiglitz (1970), these two cases, together with the HARA class
of utility, play an important role in two-fund separation for portfolio choice
models.10 For CARA utility, we let ez(x) = k + e" for all x.11 De�ne
u(x) = � exp(��x) for � = A�1.12 The indirect utility (4) in this case
becomes

v(x) = Eu(x+ ez) = [E exp(��(k + e"))] � u(x): (19)

This background risk is thus risk-taking neutral. This is hardly surprising.
Adding or subtracting any constant, be it deterministic (k) or random (e")
will not a�ect the decisions made under CARA. The above analysis only
shows that such a background risk can be constructed as an example similar
to our RTN class.

For the case of logarithmic utility, we let A = 0 and B ! 1 and de�neez(x) = (k + e")x. The indirect utility (4) is thus
v(x) = Eu(x+ ez) = E ln(1 + k + e") + u(x): (20)

Of course, v(x) is no longer a positive multiple of u(x) for this case. However,
v(�) is still an a�ne transformation of u(�), so that decisions on the primary
risk are una�ected. Likewise, whether the individual is better o� or worse
o� with the RTN background risk depends upon whether E ln(1+k+ e") > 0
or E ln(1 + k + e") < 0. Hence, this background risk also exhibits our RTN
properties.

Unfortunately, these extensions do not always lend themselves to the types of
manipulations we do in this paper. For the case of log utility, the structure
is mostly the same, so that our results typically still apply. But the case
of CARA utility is oftentimes quite di�erent, without similar results. Since
our main objective was to show how our RTN can be used as a benchmark,
we do not further explore when the methodology can or cannot be extended
to these limits of the HARA class of utility.

Finally, we also note that the RTN class de�ned in this paper is not exclu-
sively all the background risks with no e�ect on decision making. As one

10These results are also referred to as "mutual fund theorems" in much of the �nance
literature.
11Obviously, letting B ! 0 in (3) is not well de�ned. Instead, we can simply let the

"x" term vanish in (3), which gives ez as de�ned here.
12Our assumption that A+Bx > 0 implies a positive value for A in this case.



RTN Background Risk 17

example consider our RTN background risk for quadratic utility (B = �1),
which gives a multiplicative a�ne transformation. But with quadratic util-
ity, an independent zero-mean background risk yields an additive dead weight
loss to expected utility. Thus it also does not a�ect economic decisions made
on ex. The point is that our RTN class of background risks is not an exclusive
set of background risks that yield no e�ect on decisions.

Still, we hope that the RTN class of background risks as used in this paper
can prove useful in deriving many new results, as well as better interpreting
the intuition of many extant results.
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