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Abstract

The Pricing of Options on Credit-Sensitive Bonds

We build a three-factor term-structure of interest rates model and use it to price corporate
bonds. The first two factors allow the risk-free term structure to shift and tilt. The third
factor generates a stochastic credit-risk premium. To implement the model, we apply the
Peterson and Stapleton (2002) diffusion approximation methodology. The method approx-
imates a correlated and lagged-dependent lognormal diffusion processes. We then price
options on credit-sensitive bonds. The recombining log-binomial tree methodology allows
the rapid computation of bond and option prices for binomial trees with up to forty periods.
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1 Introduction

The pricing of credit-sensitive bonds, that is, bonds which have a significant probability of
default, is an issue of increasing academic and practical importance. The recent practice in
financial markets has been to issue high yield corporate bonds that are a hybrid of equity and
risk-free debt. Also, to an extent, most corporate bonds are credit-sensitive instruments,
simply because of the limited liability of the issuing enterprise. In this paper, we suggest and
implement a model for the pricing of options on credit-sensitive bonds. For example, the
model can be used to price call provisions on bonds, options to issue bonds, and yield-spread
options. From a modelling point of view, the problem is interesting because it involves at
least three stochastic variables: at least two factors are required to capture shifts and tilts
in the risk free short-term interest rate. The third factor is the credit spread, or default
premium. In this paper we model the risk-free term structure using the Peterson, Stapleton,
and Subrahmanyam (2002) [PSS] two-factor extension of the Black and Karasinski (1991)
spot-rate model and add a correlated credit spread. To price the Bermudan- and European-
style options efficiently, we need an approximation for the underlying diffusion processes for
the risk-free rate, the term premium, and the credit spread. Here, we use the recombining
binomial tree approach of Nelson and Ramaswamy (1990), extended to multiple variable
diffusion processes by Ho, Stapleton and Subrahmanyam (1995)[HSS] and Peterson and
Stapleton (2002).

There are two principal approaches to the modelling of credit-sensitive bond prices. Merton
(1977)’s structural approach, recently re-examined by Longstaff and Schwartz (1995), prices
corporate bonds as options, given the underlying stochastic process assumed for the value
of the firm. On the other hand, the reduced form approach, used in recent work by Duffie
and Singleton (1999) and Jarrow, Lando and Turnbull (1997), among others, assumes a
stochastic process for the default event and an exogenous recovery rate. Our model is a
reduced-form model that specifies the credit spread as an exogenous variable. Our approach
follows the Duffie and Singleton ”recovery of market value” (RMV) assumption. As Duffie
and Singleton show, the assumption of a constant recovery rate on default, proportional
to market value, justifies a constant period-by-period ”risk-adjusted” discount rate. In
our model, if there is no credit-spread volatility, we have the Duffie and Singleton RMV
assumption as a special case.

A somewhat similar extension of the Duffie and Singleton approach to a stochastic credit
spread has been suggested in Das and Sundaram (1999). They combine the credit-spread
factor with a Heath, Jarrow and Morton (1992) type of forward-rate model for the dynamics
of the risk-free rate. From a theoretical point of view, this approach is satisfactory, but
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it is difficult to implement for practical problems with multiple time intervals. Das and
Sundaram only implement their model for an illustrative case of four time periods. In
contrast, by using a recombining two-dimensional binomial lattice, we are able to efficiently
compute bond and option prices for as many as forty time periods.

A possibly important influence on the price of credit-sensitive bonds is the correlation of the
credit spread and the interest-rate process. To efficiently capture this dependence in a mul-
tiperiod model, we need to approximate a bivariate-diffusion process. Here, we assume that
the interest rate and the credit spread are bivariate-lognormally distributed. In the binomial
approximation, we use a modification and correction of the Ho-Stapleton-Subrahmanyam
method, as suggested by Peterson and Stapleton (2002). The model provides a basis for
more complex and realistic models, where yields on bonds could depend upon two interest
rate factors plus a credit spread.

2 Rationale of the Model

Wemodel the London Interbank Offer Rate (LIBOR), as a lognormal diffusion process under
the risk-neutral measure. Then, as in PSS, the second factor generating the term structure
is the premium of the futures LIBOR over the spot LIBOR. The second factor generating
the premium is contemporaneously independent of the LIBOR. However, to guarantee that
the no-arbitrage condition is satisfied, future outcomes of spot LIBOR are related to the
current futures LIBOR. This relationship creates a lag-dependency between spot LIBOR
and the second factor. In addition ,we assume that the one-period credit-adjusted discount
rate, appropriate for discounting credit-sensitive bonds, is given by the product of the one-
period LIBOR and a correlated credit factor. We assume that since this credit factor is
an adjustment to the short-term LIBOR, it is independent of the futures premium. This
argument leads to the following set of equations. We let (xt, yt, zt) be a joint stochastic
process for three variables representing the logarithm of the spot LIBOR, the logarithm of
the futures-premium factor, and the logarithm of the credit premium factor. We have:

dxt = µ(x, y, t)dt+ σx(t)dW1,t (1)

dyt = µ(y, t)dt+ σy(t)dW2,t (2)

dzt = µ(z, t)dt+ σz(t)dW3,t (3)

where E (dW1,tdW3,t) = ρ, E (dW1,tdW2,t) = 0, E (dW2,tdW3,t) = 0.
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Here, the drift of the xt variable, in equation (1), depends on the level of xt and also on
the level of yt, the futures premium variable. Clearly, if the current futures is above the
spot, then we expect the spot to increase. Thus, the mean drift of xt allows us to reflect
both mean reversion of the spot and the dependence of the future spot on the futures rate.
The drift of the yt variable, in equation (2), also depends on the level of yt, reflecting
possible mean reversion in the futures premium factor. We note that equations (1) and
(2) are identical to those in the two-factor risk-free bond model of Peterson, Stapleton and
Subrahmanyam (2002). The additional equation, equation (3), allows us to model a mean-
reverting credit-risk factor. Also, the correlation between the innovations dW1,t and dW3,t

enables us to reflect the possible correlation of the credit-risk premium and the short rate.

First, we assume, as in HSS, that xt, yt and zt follow mean-reverting Ornstein-Uhlenbeck
processes:

dxt = κ1(a1 − xt)dt+ yt−1 + σx(t)dW1,t (4)

dyt = κ2(a2 − yt)dt+ σy(t)dW2,t, (5)

dzt = κ3(a3 − zt)dt+ σz(t)dW3,t, (6)

where E (dW1,tdW3,t) = ρdt, E (dW1,tdW2,t) = 0, E (dW2,tdW3,t) = 0. and where the
variables mean revert at rates κj to aj , for j = x, y, z.

As in Amin(1995), we rewrite these correlated processes in the orthogonalized form:

dxt = κ1(a1 − xt)dt+ yt−1 + σx(t)dW1,t (7)

dyt = κ2(a2 − yt)dt+ σy(t)dW2,t (8)

dzt = κ3(a3 − zt)dt+ ρσz(t)dW1,t +
q
1− ρ2σz(t)dW4,t, (9)

where E(dW1,tdW4,t) = 0. Then, rearranging and substituting for dW1,t in (9), we can write

dzt = κ3(a3 − zt)dt− βx,z [κ1(a1 − xt)] dt+ βx,zdxt +
q
1− ρ2σz(t)dW4,t.

In this trivariate system, yt is an independent variable and xt and zt are dependent variables.
The discrete form of the system can be written as follows:

xt = αx,t + βx,txt−1 + yt−1 + εx,t (10)
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yt = αy,t + βy,tyt−1 + εy,t (11)

zt = αz,t + βz,tzt−1 + γz,txt−1 + δz,txt + εz,t (12)

where

αx,t = κ1a1h

αy,t = κ2a2h

αz,t = [κ3a3 − βx,zκ1a1]h
βx,t = 1− κ1h
βy,t = 1− κ2h
βz,t = 1− κ3h

γz,t = βx,z (−1 + κ1h)

δz,t = −βx,z
βx,z =

ρσz(t)

σx(t)

Equations (10)-(12) can be used to approximate the joint process in (4)-(6).

Proposition 1 (Approximation of a Three-Factor Diffusion Process) Suppose that
Xt, Yt, Zt follows a joint-lognormal process where the logarithms of Xt, Yt and Zt are given
by

xt = αx,y,t + βx,txt−1 + yt−1 + εx,t

yt = αy,t + βy,tyt−1 + εy,t

zt = αz,t + βz,tzt−1 + γz,txt−1 + δz,txt + εz,t (13)

Let the conditional logarithmic standard deviation of Jt be σj(t) for J = (X,Y, Z), where
J = urJd

N−r
J E(J). If Jt is approximated by a log-binomial distribution with binomial density

Nt = Nt−1 + nt and if the proportionate up and down movements, ujt and djt are given by

djt =
2

1 + exp(2σj(t)
p
τt/nt)

ujt = 2− djt
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and the conditional probability of an up-move at node r of the lattice is given by

qjt =
Et−1(jt)− (Nt−1 − r) ln(ujt)− (nt + r) ln(djt)

nt[ln(ujt)− ln(djt)]
then the unconditional mean and volatility of the approximated process approach their true
values, i.e., Ê0(Jt)→ E0(Jt) and σ̂jt → σjt as n→∞.

Proof The result follows as a special case of HSS (1995), Theorem 11.2

In essence, the binomial approximation methodology of HSS captures both the mean re-
version and the correlation of the processes by adjusting the conditional probability of
movements up and down in the trees. We choose the conditional probabilities to reflect
the conditional mean of the process at a time and node. The proposition establishes that
the binomial approximated process converges to the true multivariate lognormal diffusion
process.

In contrast to Nelson and Ramaswamy, the HSS methodology on which our approximation
is based relies on the lognormal property of the variables. The linear property of the joint
normal (logarithmic) variables enables the conditional mean to be fixed easily, using the
conditional probabilities. In contrast, the lattice methods discussed, for example, in Amin
(1995), fix the mean reversion and correlation of the variables by choosing probabilities
on a node-by-node basis. Also, as pointed out in Peterson and Stapleton (2002), the HSS
method fixes the unconditional mean of the variables exactly, whearas the logarithmic mean
converges to its true value as n → ∞ . If we apply the Nelson and Ramaswamy method
to the case of lognormally distributed variables, the mean of the variable converges to its
true value. However, we note that in all these methods the approximation improves as the
number of binomial stages increases. Hence, the choice between the various methods of
approximation is essentially one of convenience.

3 The Price of a Credit-Sensitive Bond

Our model is a reduced form model that specifies the credit spread as an exogenous vari-
able and then discounts the bond market value on a period-by-period basis. This approach
is consistent with the Duffie and Singleton recovery of market value (RMV) assumption.

1See Peterson and Stapleton (2002) for details on the implementation of the binomial approximation.
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Duffie and Singleton show that the assumption of a constant recovery rate on default, pro-
portional to market value, justifies a constant period by period ”risk-adjusted” discount
rate. In our model, if the credit spread volatility goes to zero, we have the Duffie and
Singleton RMV assumption as a special case. In our stochastic model, we assume that the
price of a credit-sensitive, zero-coupon, T -maturity bond at time t is given by the relation :

Bt,T = Et (Bt+1,T )
1

1 + rtπth
, (14)

with the condition, BT,T = 1, in the event of no default prior to maturity. In (14), Et
is the expectation operator, where expectations are taken with respect to the risk-neutral
measure, rt is the risk-free, one-period rate of interest defined on a LIBOR basis, and πt > 1
is the credit spread factor. The time period length from, t to t+1, is h. In this model, the
value of a risk-free, zero-coupon bond is given by

bt,T = Et (bt+1,T )
1

1 + rth
, (15)

where bT,T = 1 and, for the risk-free bond, πt = 1. Equations (14) and (15) abstract from
any consideration of the effects of risk aversion, whether to interest rate risk or default risk.
We assume secondly, that the dynamics of the joint process of rt, πt are governed by the
stochastic differential equations

d ln(rt) = κ1[a1 − ln(rt)]dt+ ln(φt) + σr(t)dW1,t (16)

d ln(φt) = κ2[a2 − ln(φt)]dt+ σφ(t)dW2,t (17)

d ln(πt) = κ3[a3 − ln(πt)]dt+ σπ(t)dW3,t (18)

with E(dW1,tdW2,t) = ρ. We note that the system of equations is the same as equations
(7)-(9), with the definitions xt = ln(rt), yt = ln(φt), and zt = ln(πt). Hence, given (16)-
(18), the spot LIBOR, rt, and the credit spread, πt, follow correlated, lognormal diffusion
processes. They can, Therefore, the processes can be approximated using the methodology
described in Section 3. The stochastic model for the short-term risk-free rate follows the
process in the PSS two-factor model. The short rate is lognormal and the logarithm of
the rate follows a generalized Ornstein-Uhlenbeck process, under the risk-neutral measure.
The process is generalized in the sense that the volatility, σr(t), is time dependent. Hence,
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if required, the model for the risk-free rate can be calibrated to the prices of interest rate
options observed in the market.

Recent research suggests that the credit spread is strongly mean reverting.2 Also, there is
evidence that the credit spread and the short rate are weakly correlated. Finally, although
inconclusive, the evidence of Chan et al (1992) suggests that lognormality of the short rate
is a somewhat better assumption than the analytically more convenient assumption of the
Vasicek and Hull-White model in which the short rate follows a Gaussian process. Hence,
the model represented by equations (14), (16) and (18) has some empirical support.

One of the main problems that arises in constructing the model is calibrating the interest
rate process (16) to the existing term structure of interest rates. This calibration is required
to guarantee that the no-arbitrage condition is satisfied. In Black and Karasinski (1991),
an iterative procedure is used, so that the prices in equation (15) match the given term
structure. Here, we use the more direct approach of PSS, who use the fact that the futures
LIBOR is the expected value, under the risk-neutral measure, of the future spot LIBOR.
This result in turn follows from Sundaresan (1991) and PSS , Lemma 1. Building the
two-factor interest rate model (16) in this manner also guarantees that the no-arbitrage
condition holds at each node, and at each future date.

To put the PSS method into effect, we take the discrete form of the short-rate process (16):

ln (rt) = ln(rt−1) + κ1a1h− κ1h ln (rt−1) + ln(φt−1) + σr (t)
√
hε1,t (19)

We then transform the process in (19) to have a unit mean by dividing by the futures
LIBOR f0.t. This gives

ln

Ã
rt
f0,t

!
= αr + (1− κ1h) ln

Ã
rt−1
f0,t−1

!
+ ln(φt−1) + σr (t)

√
hε1,t, (20)

with
αr = κ1a1h− ln (f0,t) + (1− κ1h) ln (f0,t−1) .

The process in (20) has unit mean, since f0,t = E (rt) , where the expectation is under the
risk-neutral measure. As shown by Sundaresan (1991) and reiterated in PSS lemma 1, the

2See Tauren (1999)
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futures LIBOR is traded as a price, and hence the Cox, Ingersoll and Ross (1981) expectation
result holds for the LIBOR. Therefore, we build a model of the risk-free rate using the
transformed process (20), and then calibrate the rates to the existing term structure of
futures LIBOR prices by multiplying by f0,t, for all t.

The credit spread, πt, is also assumed to follow a lognormal process. We assume as given
the expected value of πt, for all t, where E(πt) is the expectation under the risk-neutral
measure. In principle, these expectations could be estimated by calibrating the model to
the existing term structure of credit-sensitive bond prices. However, we assume that one of
the purposes of the model is to price credit-sensitive bonds at t = 0. Hence, these expected
spreads are taken as exogenous. Taking the discrete form of (18), and transforming the
process to a unit mean process, we have

ln

µ
πt

E(πt)

¶
= απ + (1− κ2h) ln

µ
πt−1

E(πt−1)

¶
+ σπ (t)

√
hε2,t, (21)

with

απ = κ2a2h− ln [E(πt)] + (1− κ2h) ln [E(πt−1)] .

Assuming that the credit spread is lognormally distributed has advantages and disadvan-
tages. One advantage is that the one-period credit-sensitive yield in the model rtπt is
also lognormal. This assumption provides consistency between the default-free and credit-
sensitive yield distributions. However, we must take care that data input do not lead to πt
values of less than unity. In the implementation of the model, we truncate the distribution
of πt as a lower limit of 1.

4 Illustrative Output of the Model

In this section, we illustrate the model using a three-period example. Three periods are
sufficient to show the structure of the model and the risk-free rates, risk-adjusted rates,
and bond prices produced. For illustration, we assume a flat term structure of futures rates
at t = 0. Each futures rate is 2.69%. We assume annual time intervals and flat caplet
volatilities of 10% for 1-, 2-, and 3-year caplets. We assume that the spot LIBOR mean
reverts at a rate of 30%. The PSS model requires an estimate of the futures premium
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volatility and mean reversion. We assume a volatility of 2% and a mean reversion of 10%.
To implement the model, we require estimates of the credit risk premium and its volatility,
mean reversion, and correlation with the LIBOR. In this example, we assume the current
risk premium is 20%, i.e., π0 = 1.2, its volatility is 12%, mean reversion 20% and its
correlation with the short-term interest rate is ρ = 0.2.

To illustrate the output, we restrict the model to have a binomial density of n = 1 for
each of the three variables. Therefore, the model, with n = 1, produces eight possible
zero-coupon risky-bond prices at time t = 1, 27 prices at time t = 2, and in general (t+1)3

prices at time t. Table 1 shows the outcome of the three variables in the model. rt is the
risk-free LIBOR. Rt is the risk-adjusted short-term rate. yt is the term premium of the
futures rate over the LIBOR and πt is the credit premium. Table 1 shows how the adapted
PSS model recombines in three dimensions to produce a nonexploding tree of risk-adjusted
interest rates. We note that there are two, three, and four different risk-free short rates at
times 1, 2, and 3, respectively. However, there are four, nine, and 16 different risk-adjusted
rates at those dates. Table 3 shows the bond price process for a four-period model, with
the binomial density t = 1. Table 2 shows the process for the risk-free bond price. Here,
there are (t+ 1)2 prices at time t.
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5 Numerical Results: Bermudan Swaptions and Options on
Coupon Bonds

To price options on defaultable bonds, we calibrate the model to the futures strip and the
cap volatility curve on the 18 July 2000, when the spot three-month LIBOR was approxi-
mately 7%. This calibration exercise gives a volatility of three-month LIBOR of 9.9% and
a volatility of the first futures premium of 9.2%. The mean reversion of these variables is
170% per annum and 13% per annum, respectively. The multiperiod model is simulated in
three-month intervals to reflect the innovations in the three-month LIBOR futures curve.
PSS use data for the 18th of July 2000 for swaption calibration of their two- and three-factor
interest rate models. (We refer the reader to that paper for details of the futures strip, cap
volatility curve, and swaption prices on this date.) Both the expectations of the futures
premium and the credit risk premium curve are equal to their current levels.

Table 4 shows European and Bermudan swaption prices for differing levels of moneyness
and different levels of the credit-risk premium. The at-the-money level is assumed to be at
a 7.5% strike. We price different swaptions using binomial densities of n = 1 and n = 2 and
then use Richardson extrapolation to find the asymptotic price (denoted r/e in the tables).
We assume that the volatility and mean reversion of the risk premium is 10% per annum
and 20% per annum, respectively. The correlation between the short rate and the credit
risk premium is 20%. Columns 4-8 show the prices of one-year options on one, two, three,
four, and five year swaps, respectively. Column 9 shows the price of a Bermudan swaption
that is exercisable annually for five years on a six-year underlying bond.

Tables 5 and 6 demonstrate the effect of varying the level and mean reversion of the credit-
risk premium compared to the model prices reported in Table 4. Table 5 shows the same
calibrated model, but with a higher mean reversion of credit-risk premium of 50%. Table
6 shows the calibrated model with higher volatility (20%) and mean reversion of 50%. All
prices shown are in basis points.

Table 4 demonstrates that the spread between the price difference of a 1/5 year payer
swaption and its Bermudan counterpart reduces as the level of the credit-risk premium
increases. Out-of-the-money spreads are reduced from 100% to 9%, whereas in-the-money
spreads reduce from 6% to under 1%. Table 5 shows the effect of increasing the mean
reversion over the model in Table 4. The spread between the Bermudan swaption and the
one-year option on the five-year swap decreases for out-of-the-money, in-the-money, and at-
the-money swaptions. The at-the-money swaptions have a 27% spread for a credit premium
level of 1.1, whereas Table 4 shows a 30% spread for the same credit premium level. Other
levels show a similiar decrease. Table 6 shows the effect of increasing the volatility of
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the credit premium. As expected, the spread between the European- and Bermudan-style
options widens. However, in some cases the raw prices are reduced. For example, Table 6
shows an out-of-the-money 1/5 swaption r/e price of 560 basis points, and its corresponding
Bermudan of 605 basis points. Table 5 shows 582 and 617 basis points, respectively. This
phenonemum is perhaps due to extrapolation error. In both the cases of a binomial density
2 and 3, the Table 6 swaption prices are higher than the corresponding Table 5 prices, i.e.,
635 and 620 versus 605 and 611.3

Tables 7 shows both European and Bermudan-style options on coupon bonds for differing
levels of coupon-rate moneyness and credit-risk premium. Table 8 prices the same options,
but with a volatile credit-risk premium, with volatility of 10%, and mean reversion at
20% per annum. Both the models are calibrated to the same futures and caps as in the
previous example. The correlation between the short rate and the credit-risk premium is
20%. The models are simulated for 12 periods, with resets at three-month intervals. The
European coupon-bond option is exercisable at year one on a four-year underlying bond.
The Bermudan coupon-bond option is exercisable yearly for three years on a four-year
coupon bond. The strike price of a unit bond is $1. All prices shown are in basis points.

Tables 7 and 8 show the effect of adding risk to the credit premium on European- and
Bermudan-style options on coupon bonds. When the option is struck at-the-money, the
effect on the price can be to produce an increase of as much as 44%. For example, when the
credit premium level is at 1.4, the price of a Bermudan-style option increases from nine to
13 basis points. When the credit premium is lower at 1.1, the prices of the options struck
deep in-the-money, increase by a much lesser amount. For example, the European-style
1-year option on the underlying four-year bond is priced at 250 basis points, and when risk
is added to the premium, then the bond option is priced at 265 basis points, an increase of
only 6%.

3To correct such an extrapolation error, we could similate prices with the binomial density 4 or 5 and
continue the extrapolation from these figures.
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6 Conclusions

We have proposed and implemented a three-factor model for the pricing of options on credit-
sensitive bonds. The first two factors represent movements in the risk-free interest rate, as in
the two-factor version of the multifactor model of Peterson, Stapleton and Subrahmanyam
(2002). The third factor is a credit spread factor that is correlated with the short-term
interest rate. The model of the bond price process produces (t+1)3 risky bond prices after
t periods. The computational efficiency of the model is achieved by using the recombining
methodology outlined in Peterson and Stapleton (2002). This methodology allows us to
capture the covariance of the credit spread and the LIBOR, as well as the two-factor risk-
free rate process. European- and Bermudan-style options on bonds and on defaultable
swaps are priced using the three-factor process. The results illustrate the sensitivity of
these instruments to the level and volatility of the credit-risk premium.

Although we have been able to price options on defaultable coupon bonds for realistic
cases, the three-factor model is obviously more computationally expensive than a two-
factor model with a risk-free rate and a credit spread. The question arises as to whether
the computational effort is wothwhile. The issue comes down to how volatile is the futures
premium factor, and how long is the maturity of the coupon bonds. Evidence from PSS
suggests that the volatility of the futures premium factor is high and has a significant effect
on the pricing of swaptions. A similar conclusion is likely to hold for defaultable coupon-
bond options. It follows that the three-factor model analysed in this article is a significant
improvement on any simpler two-factor implementation.
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Table 1: LIBOR, Term-Premium, Credit-Premium and Risk-Adjusted Yields

row r1 π1 R1 φ1 r2 π2 R2 φ2 r3 π3 R3
1 0.040 1.534 0.061
2 0.040 1.212 0.048
3 0.040 0.958 0.038
4 0.040 0.757 0.030
5 0.034 1.373 0.046 1.040
6 0.034 1.085 0.037 1.000 0.030 1.534 0.046
7 0.030 1.229 0.036 1.020 0.034 0.857 0.029 0.960 0.030 1.212 0.036
8 0.030 0.971 0.029 0.980 0.030 0.958 0.029
9 0.027 1.373 0.036 1.040 0.030 0.757 0.023
10 0.027 1.085 0.029 1.000
11 0.027 0.857 0.023 0.960 0.023 1.534 0.035
12 0.024 1.229 0.030 1.020 0.023 1.212 0.028
13 0.024 0.971 0.024 0.980 0.021 1.373 0.029 1.040 0.023 0.958 0.022
14 0.021 1.085 0.023 1.000 0.023 0.757 0.017
15 0.021 0.857 0.018 0.960
16 0.017 1.534 0.027
17 0.017 1.212 0.021
18 0.017 0.958 0.017
19 0.017 0.757 0.013

This table shows the outcome of the three primary variables: LIBOR (rt), the credit spread factor

(πt), and the futures-premium factor (φt).In addition, the table shows the risk-adjusted one-period

yield (Rt). There are t + 1 outcomes of each variable after t periods in the multidimensional

recombining tree.
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Table 2: The Price Process for a 4-Year Risk-Free Bond

row b0,4 b1,4 b1,4 b2,4 b2,4 b2,4 b3,4
1 0.9615
2 0.9383 0.9383 0.9349
3 0.9190 0.9208 0.9705
4 0.8988 0.9518 0.9518 0.9518
5 0.9307 0.9327 0.9774
6 0.9591 0.9625 0.9625
7 0.9828

The first column shows the price of the zero-coupon, risk-free bond at t = 0. The second and third

columns show the price of the bond at t = 1, where the futures premium factors are high and low,

respectively. Rows 2 and 3 show the bond prices when the LIBOR is high. Columns 4-6 show the

bond prices at t = 2, when the futures premium factors are high, medium, and low, respectively.

Row 1 shows the bond price at t = 3 when LIBOR is in the top state. Row 7 shows it in the bottom

state.
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Table 3: The Price Process for a 4-Year Risky Bond

row B0,4 B1,4 B1,4 B2,4 B2,4 B2,4 B3,4
1 0.9421
2 0.9537
3 0.9630
4 0.9706
5 0.9147 0.9166 0.9185
6 0.9302 0.9318 0.9334 0.9554
7 0.9429 0.9443 0.9456 0.9644
8 0.8994 0.9032 0.9717
9 0.9159 0.9192 0.9298 0.9313 0.9327 0.9775
10 0.8885 0.9426 0.9438 0.9451
11 0.9124 0.9156 0.9531 0.9542 0.9552 0.9658
12 0.9268 0.9296 0.9728
13 0.9431 0.9438 0.9449 0.9784
14 0.9536 0.9541 0.9550 0.9828
15 0.9621 0.9626 0.9634
16 0.9738
17 0.9792
18 0.9835
19 0.9869

The first column shows the price of the zero-coupon, credit-risky bond at t = 0. The second and

third colums show the price of the bond at t = 1, where the futures premium factors are high and

low, respectively. Rows 8 and 9 show the bond prices when the LIBOR is high, and the credit

premiums are high and low, respectively. Columns 4-6 show the bond prices at t = 2, when the

futures premium factors are high, medium, and low, respectively. Rows 5-7 show the bond prices

when the LIBOR is high and the credit premium factors are high, medium, and low, respectively.

Rows 1-4 show the bond price at t = 3 when LIBOR is in the top state and the credit premim is at

different levels.
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Table 4: Swaptions: Low risk premium volatility and low mean reversion

strike Premium Level n 1/1 1/2 1/3 1/4 1/5 Bermudan

6.5% 1.1 2 135 261 378 487 589 626
3 134 258 372 479 579 615
r/e 132 255 366 470 569 604

1.2 2 192 369 531 682 823 842
3 191 365 525 675 814 832
r/e 190 362 520 667 806 822

1.4 2 310 588 839 1070 1282 1284
3 308 584 834 1063 1273 1275
r/e 306 580 829 1056 1264 1266

7.5% 1.1 2 70 139 200 256 306 382
3 69 135 193 245 292 372
r/e 67 130 186 234 278 361

1.2 2 116 226 325 415 499 554
3 115 222 318 405 486 542
r/e 114 217 310 396 473 531

1.4 2 226 429 613 781 935 953
3 224 426 607 773 926 943
r/e 223 422 601 765 916 933

8.5% 1.1 2 30 61 88 111 129 225
3 28 58 82 102 117 217
r/e 27 55 76 92 105 209

1.2 2 60 119 172 217 256 346
3 58 115 164 206 242 336
r/e 57 111 156 194 227 325

1.4 2 150 286 408 518 618 669
3 148 282 401 508 605 657
r/e 145 278 394 498 592 644
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The table shows swaption prices for in-the-money (6.5%), at-the-money (7.5%), and out-of-the-

money (8.5%) swaptions. Column 1 shows the strike rate of the swaption. Column 2 shows the

spot level of the risk premium. The asymptotic price (r/e) is extrapolated from binomial densities

,n = 1 and n = 2 using Richardson extrapolation. The model is calibrated to the futures strip

and the cap volatility curve on 18 July 2000. From this calibration, we have the volatility of the

three-month LIBOR of 9.9% and the volatility of the first futures premium of 9.2%, with mean

reversions of 170% and 13%, respectively. The correlation between the short rate and the credit-risk

premium is assumed to be 20%. The expected credit-risk premium curve is flat and equal to its spot.

The volatility and mean reversion of the risk premiums are 10% per annum and 20%, respectively.

Columns 4-8 show the one year option on one-, two-, theree-, four-, and five-year swaps, respectively.

Column 9 shows the price of a Bermudan swaption that is exercisable annually for five years on a

six-year underlying swap. All prices are in basis points.
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Table 5: Swaptions: Low risk premium volatility and high mean reversion

strike Premium Level n 1/1 1/2 1/3 1/4 1/5 Bermudan

6.5% 1.1 2 131 253 367 474 575 605
3 133 256 370 477 579 611
r/e 134 259 373 481 582 617

1.2 2 190 363 523 673 814 827
3 191 365 525 676 817 832
r/e 192 367 528 679 821 836

1.4 2 309 587 839 1071 1284 1285
3 308 585 836 1066 1279 1280
r/e 307 582 832 1062 1274 1275

7.5% 1.1 2 65 127 184 236 283 355
3 67 131 188 239 286 362
r/e 69 134 191 243 290 369

1.2 2 112 215 310 398 480 529
3 113 219 314 402 484 535
r/e 115 222 318 406 488 542

1.4 2 225 427 611 779 935 949
3 224 425 607 775 930 944
r/e 223 423 604 771 925 938

8.5% 1.1 2 24 51 73 92 107 199
3 26 54 76 95 109 206
r/e 28 57 80 97 112 212

1.2 2 54 107 154 194 230 317
3 56 111 158 199 234 324
r/e 58 114 162 203 238 332

1.4 2 148 282 402 512 612 657
3 146 279 398 506 605 651
r/e 145 277 394 500 597 645
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The table shows swaption prices for in-the-money (6.5%), at-the-money (7.5%), and out-of-the-

money (8.5%) swaptions. Column 1 shows the strike rate of the swaption. Column 2 shows the spot

level of the risk premium. The asymptotic price (r/e) is extrapolated from binomial densities ,n = 1

and n = 2 using Richardson extrapolation. The model is calibrated to the futures strip and the cap

volatility curve on 18 July 2000. From this calibration, we have the volatility of three-month LIBOR

of 9.9% and the volatility of the first futures premium of 9.2%, with mean reversion of 170% and

13%, respectively. The correlation between the short rate and the credit risk premium is assumed

to be 20%. The expected credit-risk premium curve is flat and equal to its spot. The volatility and

mean reversion of the risk premium are 10% per annum and 50%, respectively. Columns 4-8 show

the one-year option on one-, two-, three-, four-, and five-year swaps, respectively. Column 9 shows

the price of a Bermudan swaption that is exercisable annually for five years on a six-year underlying

swap. All prices are in basis points.
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Table 6: Swaptions: High risk premium volatility and high mean reversion

strike Premium Level n 1/1 1/2 1/3 1/4 1/5 Bermudan

6.5% 1.1 2 141 267 382 488 588 635
3 137 260 372 476 574 620
r/e 134 253 362 464 560 605

1.2 2 191 363 520 667 805 827
3 192 365 523 670 808 832
r/e 194 367 526 673 812 838

1.4 2 310 587 837 1066 1277 1282
3 307 581 829 1056 1265 1269
r/e 304 575 820 1046 1253 1256

7.5% 1.1 2 79 148 208 261 308 396
3 76 141 196 245 290 381
r/e 73 134 185 230 271 366

1.2 2 119 222 315 399 478 542
3 120 226 319 403 482 549
r/e 122 229 323 408 485 556

1.4 2 229 432 613 779 931 957
3 225 425 603 767 918 942
r/e 222 417 594 755 905 927

8.5% 1.1 2 39 72 97 117 133 239
3 36 65 87 104 117 227
r/e 34 59 77 91 101 214

1.2 2 65 119 164 203 236 338
3 67 122 168 207 240 346
r/e 69 126 172 211 244 353

1.4 2 157 293 412 520 616 680
3 153 285 401 504 599 663
r/e 149 277 389 489 582 645
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The table shows swaption prices for in-the-money (6.5%), at-the-money (7.5%), and out-of-the-

money (8.5%) swaptions. Column 1 shows the strike rate of the swaption. Column 2 shows the spot

level of the risk premium. The asymptotic price (r/e) is extrapolated from binomial densities ,n = 1

and n = 2 using Richardson extrapolation. The model is calibrated to the futures strip and the cap

volatility curve on 18 July 2000. From this calibration, we have the volatility of three -month LIBOR

of 9.9% and the volatility of the first futures premium of 9.2%, with mean reversion of 170% and

13%, respectively. The correlation between the short rate and the credit risk premium is assumed

to be 20%. The expected credit-risk premium curve is flat and equal to its spot. The volatility and

mean reversion of the risk premium are 20% per annum and 50%, respectively. Columns 4-8 show

the one year option on one-, two-, three-, four-, and five-year swaps, respectively. Column 9 shows

the price of a Bermudan swaption that is exercisable annually for five years on a six-year underlying

swap. All prices are in basis points.
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Table 7: European and Bermudan Options on Coupon Bonds: Risk-Free
Credit Premium

Coupon Rate n Premium Level
1.1 1.2 1.4

1/3 Bermudan 1/3 Bermudan 1/3 Bermudan

7% 2 23 47 6 24 0 6
3 26 51 8 27 0 7
r/e 29 54 10 29 0 9

8% 2 101 129 44 72 4 22
3 103 133 46 76 6 24
r/e 106 136 48 80 8 27

9% 2 248 268 138 167 30 59
3 249 271 141 171 34 63
r/e 250 274 144 175 38 67

The table shows prices for options on coupon bonds, for the coupon strike rates of 7%, 8%, and

9%. The asymptotic price (r/e) is extrapolated from binomial densities n = 1 and n = 2. The

model is calibrated to the futures strip and the cap volatility curve on 18 July 2000. The volatility

of three-month LIBOR of 9.9% and the volatility of the first futures premium of 9.2%, with mean

reversion of 170% and 13% respectively. The correlation between the short rate and the credit risk

premium is 20%. The futures credit risk premium curve is flat and equal to its spot. There is no

volatility OR?? or mean reversion of the risk premium. The strike rate for a unit bond is $1. All

prices shown are in basis points. Columns 3, 5, and 7 show the one-year option on a four-year

underlying bond for initial credit risk premium levels of 1.1, 1.2, and 1.4, respectively. Columns 4,

5, and 7 show the price of a Bermudan-style swaption that is exercisable annually for three years on

the same four-year underlying bond.
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Table 8: European and Bermudan Options on Coupon Bonds: Risky Credit
Premium

Coupon Rate n Premium Level
1.1 1.2 1.4

1/3 Bermudan 1/3 Bermudan 1/3 Bermudan

7% 2 32 60 11 33 1 10
3 34 63 12 35 1 11
r/e 35 66 14 38 1 13

8% 2 115 146 56 87 9 31
3 117 150 57 91 10 33
r/e 119 153 59 95 11 36

9% 2 262 286 155 186 41 74
3 263 289 157 190 43 78
r/e 265 291 159 194 45 82

The table shows prices for options on coupon bonds, for the coupon strike rates of 7%, 8%, and

9%. The asymptotic price (r/e) is extrapolated from binomial densities n = 1 and n = 2. The

model is calibrated to the futures strip and the cap volatility curve on 18 July 2000. The volatility

of three-month LIBOR is 9.9% and the volatility of the first futures premium is 9.2%, with mean

reversion of 170% and 13%, respectively. The correlation between the short rate and the credit risk

premium is 20%. The expected credit risk premium curve is flat and equal to its spot. The volatility

and mean reversion of the risk premium is 20% per annum and 50%, respectively. The strike rate of

a unit bond is $1. All prices shown are in basis points. Columns 3, 5, and 7 show the one-year option

on a four-year underlying bond for initial credit risk premium levels of 1.1, 1.2 and 1.4 respectively.

Columns 4, 5, and 7 show the price of a Bermudan-style swaption which is exercisable annually for

three years on the same four-year underlying bond.


