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Abstract

This paper investigates the preference restrictions which underlie the Black-Scholes (log-

normal), Brennan (normal), and Rubinstein (generalized lognormal) option pricing models.

It also introduces a fourth option pricing model for assets which have negatively skewed

returns. It establishes new sufficient conditions for the models to hold in a multi-asset

economy. First, assuming that expectations of an asset price follow a lognormal diffusion,

we derive the Black-Scholes model in an economy where the representative agent has an

extended power utility function of wealth. We then establish the Brennan model assuming

that expectations follow a normal diffusion in an economy where the representative agent

again has an extended power utility function. Then we assume that expectations follow

a displaced diffusion and derive conditions under which the Rubinstein model holds. Fi-

nally we assume that an asset has a negatively skewed lognormal distribution as in the

bond option model of Stapleton and Subrahmanyam (1993) and again derive conditions for

risk-neutral pricing of options.



1 Introduction

Option pricing models normally start by assuming that the price of an asset follows a

given stochastic process. In the Black-Scholes model, the spot price of the asset is assumed

to follow a geometric Brownian motion. In the Black model, either the forward price or

the futures price is assumed to follow a geometric Brownian motion. Further examples

are Brennan (1979)’s model which can be derived by assuming that the asset follows an

arithmetic Brownian motion and Rubinstein (1983)’s displaced diffusion model. However,

as emphasised in the work of Bick (1987, 1990), the price process for an asset can be

derived endogenously, given more basic assumptions about the production process and

utility functions. It then transpires that the conditions under which the price process is a

geometric Brownian motion, or one of the other above processes, are quite restrictive. Bick

(1987), for example, shows that constant proportional risk aversion (CPRA) is a necessary

and sufficient condition for the price process to follow a geometric Brownian motion, if

the production process follows such a process, albeit in a one-asset model. Also, if these

conditions do not hold, then the consequences for option pricing are immediate. As shown,

for example, by Franke, Stapleton and Subrahmanyam (1999), if investors have declining

risk aversion, all options will be systematically underpriced by the Black-Scholes model.

The study of economies in which the Black-Scholes and other ’risk-neutral’ option pricing

models hold is therefore of some importance.

The literature discussing conditions for endogenous price processes, and the related liter-

ature on the existence of risk-neutral-valuation relationships for option pricing in single-

period economies, is reviewed in section 2. The overwhelming impression gained from this

literature is that the necessary and sufficient conditions for an asset price to follow geomet-

ric Brownian motion are that the representative investor has CPRA utility (see for example

Bick (1987), Stapleton and Subrahmanyam (1990), He and Leland (1995), and Brennan

(1979)). If this were true, the Black-Scholes model would only strictly apply in quite re-

strictive conditions. However, this is not true. In a multi-asset economy, the asset on which

the option is written and the market portfolio can, and most likely will, follow different

stochastic processes.1 In this paper, we find alternative conditions for the Black-Scholes

model to hold, by allowing the market portfolio to follow a different stochastic process from

1In the Brennan-Rubinstein discrete time option pricing model it is assumed that the stock and the

market folows a joint lognormal process. While this is possible for a single asset, it is not possible for all

assets, since the sum of lognormals is not lognormal. Also, evidence from option implied volatilities suggests

that individual assets and the market portfolio follow different processes.
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that of the individual asset on which the option is written.

In this paper, we break the link between the information process followed by the individ-

ual asset and the market portfolio. As well as allowing us to find alternative economies

which support the Blkack-Scholes model, it also allows us to consider conditions for the

risk-neutral valuation of options on different assets, with different distributions, within the

same economy. For example, assume there are four different assets. One has an information

process which follows standard geometric Brownian motion. A second follows a displaced

diffusion process as in Rubinstein (1983). A third asset follows an arithmetic Brownian

motion. A fourth has a negatively skewed distribution, where one minus the price is lognor-

mally distributed. All these cases are quite relevant. As discussed in Rubinstein (1983) and

Camara (1999), the displaced diffusion process is relevant when valuing options (for example

the debt or equity) on a firm with cash assets. The cash puts a lower non-zero limit on the

value of the firm. Again, as discussed in Brennan (1979), the arithmetic Brownian motion

may well be more appropriate for valuing options on physical quantities or on profits, which

can become negative. Also, as proposed by Stapleton and Subrahmanyam (1993), it may

be reasonable to model a zero-coupon bond price as a negatively skewed lognormal variable.

Given these four different asset information processes, we ask the question as to when the

forward price of each of the assets will also follow the same process as that followed by its

information process.

This paper is organised as follows. In section 2 we review the most relevant articles in the

literature, concluding that the overwhelming majority of the research concentrates either

on single-asset economies or on the special case where the asset and the market follow a

similar process. Section 3 then looks at the case of geometric Brownian motions. It shows a

range of economies in which the price of an asset follows a geometric Brownian motion and

the Black-Scholes model holds. These include the cases where the aggregate wealth follows

a displaced diffusion process and utility is HARA and the case where the aggregate wealth

follows a Brownian motion and utility is CARA. In section 4 we then assume that assets

in the same economy can follow any of four different processes and establish conditions

under which the forward prices of the assets follow similar processes. This also establishes

common risk-neutral-valuation relationships for the valuation of options on the various

assets. Section 5 presents the conclusions of the paper.
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2 Previous Literature

Bick (1987) considered economies that are consistent with the Black-Scholes model. He as-

sumes a production process for a single consumption good that follows a geometric Brownian

motion and shows that the endogenously derived stock price process follows a geometric

Brownian motion, if and only if the investor has CPRA. Also, Bick showed that if the Black-

Scholes model is to hold for options on the asset, then a necessary and sufficient condition

is that the investor has a utility function that exhibits constant proportional risk aversion.

He and Leland (1995) use a rather different set up but again conclude that, in a single asset

economy, the Black-Scholes model holds if the representative investor has a CPRA utility

function.

Stapleton and Subrahmanyam (1990) consider the following related question. When is a

random walk in the expectation of a cash flow translated into a random walk in the value

of a cash flow? They consider both geometric random walks and arithmetic random walks.

They conclude that a geometric random walk in the expectation of an asset becomes a

geometric random walk in the value of the asset, if and only if the pricing kernel is a power

function of the asset return. They then consider economies where the asset return and

the market portfolio follow a joint geometric random walk process and show that the price

process for the aset will be a geometric random walk if and only if the representative investor

has CPRA preferences.

Franke, Stapleton and Subrahmanyam (1999) show that the crucial property that deter-

mines whether prices follow random walks is the elasticity of the pricing kernel. They show

that if the expectation of a cash flow follows a geometric diffusion process then the value of

the cash flow also follows a geometric diffusion process, if the pricing kernel has constant

elasticity. Their main purpose is to show that if the pricing kernel exhibits declining elas-

ticity then the value process has excess volatility and autocorrelation. This in turn leads to

the overpricing of options compared to the Black-Scholes model.

Bick (1990) considers the more general question of the ’viability’ of a stochastic process

for the price of an asset. Again he restricts the analysis to a single asset economy. His

paper studies the following question: which assumptions on the price process of the market

portfolio ”make sense”? For the HARA-class of utility functions Bick indentifies the class of

diffusion processes that are viable, given these utility functions. The present paper follows

Bick in investigating the whole set of HARA functions.
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The question as to whether we get geometric or arithmetic random walks in cash flows is

closely related to the conditions for RNVRs to exist in a dynamic incomplete discrete time

economy. Merton (1973) and Rubinstein (1976) first found that the Black-Scholes model

holds in a discrete economy where investors have CPRA utility and where the asset price

and the market portfolio are joint-lognormally distributed. Brennan (1979) then showed

that CPRA was a necessary condition if the Black-Scholes model was to hold for options

on the market portfolio. Brennan also showed that if the asset and the market portfolio

are joint-normally distributed, as in the Sharpe-Lintner CAPM, then a RNVR for options

(analogous to the Black-Scholes model) holds if and only if investors have exponential utility.

A significant restriction in most of the above literature is that it covers either the price

process for the asset in a single asset economy, or assumes that the process followed by the

asset and the market portfolio is the same.2 In this paper we employ a similar idea. We

allow the joint process for the asset and the aggregate wealth to follow one of a set of joint

processes. By relaxing the unnecessary restriction that the asset and the market follow the

same type of process we are also able to consider the price processes for a range of possible

assets in the same economy. We are then able to apply any of Bick’s class of viable processes

for aggregate wealth, given HARA utility in order to price options on assets with a range

of possible distributions.

2An exception is the recent paper by Camara (1999) who finds conditions for the risk-neutral valuation

of options in an economy where the asset and the market follow a bivariate lognormal-normal process.
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3 Conditions for a Lognormal Marginal Utility of Wealth

We work with the following generalized definition of bivariate normality:

Definition 1 (The generalized Bivariate Normal Distribution) Two variables Y and Z are

generalized bivariate-normally distributed if and only if there exist functions g(Y ) and h(Z)

that are bivariate normally distributed.

For example, if g(Y ) =ln(Y ), and h(Z) = Z, Y and Z are said to be bivariate lognormal-

normal. As a second example, if g(Y ) =ln(a+Y ), and h(Z) =ln(Z), Y and Z are bivariate

displaced lognormal-lognormal.

Definition 2 (The HARA marginal utility function) The marginal utility functions of the

HARA (hyperbolic absolute risk aversion) or LRT (linear risk tolerance) class are given by

the following equation:

U
0
(WT ) =

µ
αWT

1− ϕ + θ

¶ϕ
(1)

where WT denotes terminal wealth, and α, ϕ and θ are parameters, such that
αWT
1−ϕ + θ > 0.

It is well known that if α > 0 and ϕ < 0 then θ < 0 implies DPRA, θ = 0 implies CPRA,

and θ > 0 implies IPRA. If α > 0, ϕ→−∞, θ = 1 then utility displays CARA.

We now prove a result which is fundamental for the analysis of endogenous price processes.

In equilibrium economies, the pricing kernel depends upon on the marginal utility function

of the representative investor. The following lemma establishes conditions under which the

marginal utility function is lognormal. we have:

Lemma 1 Assume that g(WT ) ∼ N(µw, σ2w), where g(WT ) is a function of the terminal

wealth, WT .

The following conditions are sufficient for U 0(Wt) to be lognormal:

1. Terminal wealth is normally distributed and CARA utility:

g(WT ) =WT and ϕ→−∞, θ = 1, α > 0

5



2. Terminal wealth is lognormally-distributed and CPRA utility:

g(WT ) = ln(WT ) and ϕ < 0, θ = 0, α > 0

3. Terminal wealth is displaced-lognormally distributed wealth and HARA utility:

g(WT ) = ln

∙
WT +

(1− ϕ)θ
α

¸
and ϕ < 0, α > 0

Proof

1. g(WT ) =WT means that WT ∼ N(µw, σ2w). ϕ→−∞, θ = 1, α > 0 implies that

U 0(WT ) = e
−αWT .

Hence

ln[U 0(WT )] = −αWT ,

which is normal since WT is normal.

2. g(WT ) = ln(WT ) means that ln(WT ) ∼ N(µw,σ2w). θ = 0 implies that

U 0(WT ) =

µ
αWT

1− ϕ
¶ϕ

which is lognormal since

ln[U 0(WT )] = ϕ

∙
ln

µ
α

1− ϕ
¶
+ ln(WT )

¸
which is normal, since ln(WT ) is normal.

3. g(WT ) = ln
h
WT +

(1−ϕ)θ
α

i
means that ln

h
WT +

(1−ϕ)θ
α

i
∼ N(µw, σ2w). Marginal util-

ity

U 0(WT ) =

µ
αWT

1− ϕ + θ

¶ϕ
is lognormal since

ln[U 0(WT )] = ϕ

∙
ln

µ
αWT

1− ϕ + θ

¶¸
which is normal, since

ln

µ
αWT

1− ϕ + θ

¶
is normal.
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4 Geometric Random Walk for the Asset Price

In this section, we discuss the most important case in the literature, where the asset price

follows a geometric random walk. A sufficient condition for the Black-Scholes theorem to

hold is that the forward price of the asset follows such a process. Here we assume that the

conditional expectation of the terminal price follows a lognormal geometric random walk

and derive conditions under which the endogenously derived forward price follows a similar

process.

Theorem 1 (GRW for the forward price)

Assume that a representative agent exists with a utility function of the HARA family. Let

the conditional expectation at time t of the asset price XT follow a lognormal geometric

random walk process, so that:

ln[Et(XT )] ∼ N [µx,σx], t ≤ T

Then the forward price Ft(XT ) follows a lognormal geometric random walk if either:

1. ϕ → −∞, θ = 1, and α > 0; that is preferences are characterised by a negative

exponential utility function, and wealth WT and XT are joint normal-lognormal.

2. α > 0, ϕ < 0, and θ = 0, that is preferences are CPRA, and wealth WT and XT are

joint lognormal.

3. α > 0, ϕ < 0, and WT > − (1−ϕ)θα ; that is preferences are characterised by an extended

power utility function, and wealthWT and XT are joint displaced lognormal-lognormal.

Proof

It has been established in the literature ,that the forward price of XT , denoted Ft,T (XT ),

follows a geometric random walk, if and only if the pricing kernel φt,T defined by Ft(XT ) =

Et(XTφt,T ), where Et(φt,T ) = 1, has the property

ψt,T ≡ Et(φt,T |XT ) = AXβ
T
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for constants A and β. In other words, the asset specific pricing kernel ψt,T , is a power

function of the cash flow XT .
3 We will show that any of the conditions 1), 2), and 3)

above are sufficient for this condition to hold.

1. g(WT ) = WT means that WT ∼ N(µw, σ2w). ϕ → −∞, θ = 1, α > 0 implies from

Lemma 1 that

U 0(WT ) = e
−αWT .

Hence

ln[U 0(WT )] = −αWT ,

which is normal since WT is normal. Also, since WT is normal,

Et[U
0
(WT )] = exp

(
−αµw + α2

2
σ2w

)
(2)

Since WT and lnXT are joint normal we can write the linear regression:

−αWT = a+ b ln(XT ) + ² (3)

where lnXT is independent of ². From (3) it follows, taking variances

α2σ2w = b
2σ2x + σ2²

and hence

vart[ln(U
0
(WT ))|XT ] = σ2² = α2σ2w − b2σ2x (4)

Also, from (3) it follows, taking expectations that

−αµw = a+ bµx

and hence the conditional expectation

Et[ln(U
0
(WT ))|XT ] = a+ b ln(XT ) = −αµw − bµx + b ln(XT ), (5)

where A is a constant. Using equations (4) and and (5), it follows that

ψt,T = Et
h
U
0
(WT ) | XT

i
/Et

h
U
0
(WT )

i
=

exp
£−αµw − bµx + b ln(XT ) + (α2σ2w − b2σ2x)/2¤

exp [−αµw + (α2σ2w)/2]
= AXb

T .

3This follows, for example, from a special case of Stapleton and Subrahmanyam (1990)
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Hence, the asset specific pricing kernel is a power function of the cash flow XT and

the price of XT therefore follows a geometric random walk. 2

2. Cases 2 and 3

g(WT ) = ln

∙
WT +

(1− ϕ)θ
α

¸
with θ = 0, in case 2, implies by Lemma 1 that

U 0(WT ) =

µ
αWT

1− ϕ + θ

¶ϕ
is lognormal, and has logarithmic mean

Et

∙
ln

µ
αWT

1− ϕ + θ

¶ϕ¸
= ϕµw − ϕ ln

h
(1− ϕ)α−1

i
and logarithmic variance

V art

∙
ln

µ
αWT

1− ϕ + θ

¶ϕ¸
= ϕ2σ2w

It follows that

Et
h
U
0
(WT )

i
= exp

½
ϕµw − ϕ ln

h
(1− ϕ)α−1

i
+
1

2
ϕ2σ2w

¾
. (6)

Since WT and XT are joint displaced lognormal-lognormal, ln
³
αWT
1−ϕ + θ

´
and ln(XT )

are joint normal, and hence we can write the linear regression:

ϕln

µ
αWT

1− ϕ + θ

¶
= a+ b ln(XT ) + ² (7)

where ln(XT ) is independent of ². From (7) it follows, taking variances

ϕ2σ2w = b
2σ2x + σ2²

and hence

vart[ln(U
0
(WT ))|XT ] = σ2² = ϕ2σ2w − b2σ2x. (8)

Also, from (7) it follows, taking expectations that

ϕµw − ϕ ln
h
(1− ϕ)α−1

i
= a+ bµx

and hence the conditional expectation

Et[ln(U
0
(WT ))|XT ] = a+ b ln(XT ) = ϕµw −ϕ ln

h
(1− ϕ)α−1

i
− bµx+ b ln(XT ). (9)
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Using equations (8) and and (9), it follows that

ψt,T = Et
h
U
0
(WT ) | XT

i
/Et

h
U
0
(WT )

i
=

exp
£
ϕµw − ϕ ln

£
(1− ϕ)α−1¤− bµx + blnXT + (ϕ2σ2w − b2σ2x)/2¤

exp [ϕµw − ϕ ln [(1− ϕ)α−1] + (ϕ2σ2w)/2]
= AXb

T .

Hence, the asset specific pricing kernel is a power function of the cash flow XT and

the price of XT therefore follows a geometric random walk. In particular, when in

case 2 θ = 0 and wealthWT and XT are joint lognormal, the price of XT again follows

a geometric random walk.

2

Theorem 1 is interesting because it provides a whole range of economies in which the Black-

Scholes model prices options on lognormally distributed assets. Whereas Bick (1989), Le-

land (1995), Ritchen and Mathur (1995), Franke, Stapleton and Subrahmanyam (1998),

Brennan (1979), Rubinstein (1976) all derive the Black-Scholes model in economies where

aggregate wealth is lognormally distributed and the representative agent has CPRA prefer-

ences, Theorem 1 assumes the more general HARA class of utility functions. It provides, for

example several special cases where the model holds. We summarize important examples

in the following corollary:

Corollary 1 Assume that the conditional expectation of the individual asset follows a geo-

metric Brownian motion and either:

1. Aggregate wealth is lognormal and the utility of the representative agent exhibits CPRA.

2. Aggregate wealth is normal and the utility of the representative agent exhibits CARA.

3. Aggregate wealth is displaced lognormal and the representative agent has an extended

power utility function that displays either DPRA, CPRA, or IPRA.

Then the Black-Scholes model holds for the pricing of European-style options on indiviudual

assets.
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Proof: A geometric Brownian motian is a lognormal geometric random walk in continuous

time. Hence Theorem 1 applies and the asset forward price follows a geometric Brownian

motion. This condition is sufficient, given frictionless markets, for the Black-Scholes model

to hold.2

5 Displaced-Geometric RandomWalks and Negatively-Skewed-

Geometric Random walks: Sufficient Conditions for Price

Processes

In this section we generalize previous results in the literature to two cases, where the condi-

tional expectation of a cash flow XT follows a displaced-geometric random walk (DGRW),

and negatively-skewed-geometric random walk respectively. These results will then be used

in the following section to establish sufficient conditions for the forward prices of assets to

follow similar processes.

Lemma 2 Assume that the asset price XT follows a displaced geometric random walk.

Then the forward price of XT follows a displaced geometric random walk if the asset specific

pricing kernel, ψt,T = Et(φt,T |XT ) has the form: ψt,T = a(XT − β)α.

Proof First, note that since the pricing kernel, φ, has an expectation of 1, the asset specific

pricing kernel ψt,T = Et(φt,T |XT ), also has an an expectation of 1. Now suppose that

ψt,T = a(XT − β)α.

Since XT = β + [Et(XT )− β]yt,T ,

Et(XT ) = β +Et(yt,T )(Et(XT )− β).

Hence, we can write:
XT

Et(XT )− β =
β + (Et(XT )− β)yt,T
Et(yt,T )(Et(XT )− β) .

Since Et(ψt,T ) = aEt(XT − β)α = aEt[(Et(XT )− β)αyαt,T ] = 1 it follows that:

a =
1

(Et(XT )− β)αEt(yαt,T )
.
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Hence,

ψt,T =
(XT − β)α

(Et(XT )− β)αEt(yαt,T )

=
yαt,T

Et(yαt,T )
.

It follows that:

Covt

∙
XT

Et(XT )− β ,ψt,T
¸
= Covt

"
yt,T

Et(yt,T )
,
yαt,T

Et(yαt,t)

#

which is nonstochastic. Given that Covt
h

XT
Et(XT )−β ,ψt,T

i
is non-stochastic we now show

that the forward price of XT follows a displaced geometric random walk. First, we define

²t by the relationship

XT − β = [Ft(XT )− β]²t,T .
Then, since the forward price is given by

Ft(XT ) = Et(XTψt,T ),

we can write:

²t,T =
XT − β

Et(XT ) +Covt(XT ,ψT )− β .

Given that XT follows a displaced-geometric random walk, XT − β = (Et(XT ) − β)yt,T ,

where yt,T is independent of t. Then ²t,T can be written:

²t,T =
yt,T

1 +Covt
h

XT
Et(XT )−β ,ψt,T

i
Since yt,T is independent of Et(XT ) and Covt[

XT
Et(XT )−β ,ψT ] is non-stochastic, then ²t,T

is independent of the state of the world at t. Hence, the forward price of XT follows a

displaced-geometric random walk. 2

We now extend our results to the case of negatively-skewed-geometric random walks. A

cash flow follows such a process if β −XT = (β −Xt)yt,T and the logarithm of yt,T is a

normally distributed noise, independent Et(XT ).

Lemma 3 Assume that the asset price XT follows a negatively-skewed-geometric random

walk. Then the forward price Ft(XT ) follows a negatively-skewed-geometric random walk if

ψt,T = a(β −XT )α.

12



Suppose that ψt,T = a(β −XT )α.

Since XT = β + [β −Et(XT )]yt,T ,

Et(XT ) = β + Et(yt,T )(β −Et(XT ))

we can write:

XT
β − Et(XT ) =

β − (β −Et(XT ))yt,T
Et(yt,T )(β − Et(XT )) .

Since Et(ψt,T ) = aEt[(β −Et(XT ))αyαt,T ] = 1, it follows that:

a =
1

(β −Et(XT ))αEt(yαt,T )
.

Hence the asset specific pricing kernel can be written in the following form:

ψt,T =
yαt,T

Et(yαt,T )
.

It follows that:

Covt

∙
XT

β −Et(XT ) ,ψt,T
¸
= Covt

"
yt,T

Et(yt,T )
,
yαt,T

Et(yαt,t)

#
,

which is nonstochastic.

Given that Covt
h

XT
β−Et(XT ) ,ψt,T

i
is non-stochastic we now show that the forward price

of XT follows a negatively-skewed geometric random walk. First, we define ²t,T by the

relationship:

β −XT = [β − Ft(XT )]²t,T .
Then, since the forward price is given by Ft(XT ) = Et(XTψt,T ), we can write:

²t,T =
β −XT

β −Et(XT )− Covt(XT ,ψt,T ) .

Given thatXT follows a negatively-skewed geometric random walk, β−XT = (β−Et(XT ))yt,T ,
where yt,T is independent of t. Then ²t,T can be written:

²t,T =
yt,T

1−Covt
h

XT
β−Et(XT ) ,ψt,T

i .
Since yt,T is independent of Et(XT ) and Covt[

XT
β−Et(XT ) ,ψT ] is non-stochastic, then ²t,T

is independent of the state of the world at t. Hence, the forward price of XT follows a

negatively-skewed geometric random walk. 2
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6 An Economy with Assets Following Different Processes

In this section we consider an economy in which the conditional expectation of the terminal

asset price follows any of the four different processes:

1. A geometric random walk.

2. An arithmetic random walk.

3. A displaced geometric random walk.

4. A negatively skewed geometric random walk.

We ask the question: under what conditions are each of these processes preserved in the

case of the forward price of the asset? We are then able to establish sufficient conditions

for risk-neutral-valuation relationships to apply for each type of asset in the same economy.

From Theorem 1 we know three sets of sufficient conditions for the forward price of an

asset, who’s expectation follows a GRW, to follow a GRW. We now show that the same

conditions suffice in the case of an asset following an ARW, a DGRW, and a NSGRW. We

begin by establishing the result in the case of an asset whose conditional expectation follows

an arithmetic, normal random walk. We have:

Theorem 2 (ARW for the forward price)

Assume that a representative agent exists with a utility function of the HARA family. Let

the conditional expectation at time t of the asset price XT follow a normal arithmetric

random walk process, so that:

Et(XT ) ∼ N [µx,σx], t ≤ T

Then the forward price Ft(XT ) follows a normal arithmetric random walk if either:

1. ϕ → −∞, θ = 1, and α > 0; that is preferences are characterised by a negative

exponential utility function, and wealth WT and XT are joint normal.

2. α > 0,ϕ < 0andθ = 0, that is preferences are CPRA, and wealth WT and XT are

joint lognormal-normal.

14



3. α > 0, ϕ < 0, and WT > − (1−ϕ)θα ; that is preferences are characterised by an extended

power utility function, and wealth WT and XT are joint displaced lognormal-normal.

Proof

The proof is similar to the proof of Theorem 1. From a special case of Stapleton and

Subrahmanyam (1990), the forward price of XT , denoted Ft,T (XT ) follows a arithmetric

random walk, if and only if the pricing kernel φt,T defined by Ft(XT ) = Et(XTφt,T ) has the

property

ψt,T ≡ Et(φt,T |XT ) = AebXT

for constants A and b. In other words, the asset specific pricing kernel ψt,T , is an exponential

function of the cash flow XT . We will show that any of the conditions 1), 2), and 3) above

are sufficient for this condition to hold.

1. g(WT ) = WT means that WT ∼ N(µw, σ2w). ϕ → −∞, θ = 1, α > 0 implies from

Lemma 1 that

U 0(WT ) = e
−αWT .

Hence

ln[U 0(WT )] = −αWT ,

which is normal since WT is normal. Also, given that WT is normal,

Et[U
0
(WT )] = exp

(
−αµw + α2

2
σ2w

)
(10)

Since WT and XT are joint normal we can write the linear regression:

−αWT = a+ b XT + ² (11)

where XT is independent of ². From (11) it follows, taking variances

α2σ2w = b
2σ2x + σ2²

and hence

vart[ln(U
0
(WT ))|XT ] = σ2² = α2σ2w − b2σ2x (12)

Also, from (11) it follows, taking expectations that

−αµw = a+ bµx
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and hence the conditional expectation

Et[ln(U
0
(WT ))|XT ] = a+ b XT = −αµw − bµx + b XT . (13)

Using equations (12) and and (13), it follows that

ψt,T = Et
h
U
0
(WT ) | XT

i
/Et

h
U
0
(WT )

i
=

exp
£−αµw − bµx + b XT + (α2σ2w − b2σ2x)/2¤

exp [−αµw + (α2σ2w)/2]
= AebXT .

Hence, the asset specific pricing kernel is an exponential function of the cash flow XT

and the price of XT therefore follows an arithmetric random walk. 2

2. Cases 2 and 3

g(WT ) = ln

∙
WT +

(1− ϕ)θ
α

¸
with θ = 0, in case 2, implies by Lemma 1 that

U 0(WT ) =

µ
αWT

1− ϕ + θ

¶ϕ
is lognormal, and has logarithmic mean

Et

∙
ln

µ
αWT

1− ϕ + θ

¶ϕ¸
= ϕµw − ϕ ln

h
(1− ϕ)α−1

i
and logarithmic variance

V art

∙
ln

µ
αWT

1− ϕ + θ

¶ϕ¸
= ϕ2σ2w

It follows that

Et
h
U
0
(WT )

i
= exp

½
ϕµw − ϕ ln

h
(1− ϕ)α−1

i
+
1

2
ϕ2σ2w

¾
. (14)

Since WT and XT are joint displaced lognormal-normal, ln
³
αWT
1−ϕ + θ

´
and XT are

joint normal, and hence we can write the linear regression:

ϕln

µ
αWT

1− ϕ + θ

¶
= a+ b XT + ² (15)

where XT is independent of ². From (15) it follows, taking variances

ϕ2σ2w = b
2σ2x + σ2²
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and hence

vart[ln(U
0
(WT ))|XT ] = σ2² = ϕ2σ2w − b2σ2x. (16)

Also, from (15) it follows, taking expectations that

ϕµw − ϕ ln
h
(1− ϕ)α−1

i
= a+ bµx

and hence the conditional expectation

Et[ln(U
0
(WT ))|XT ] = a+ b XT = ϕµw − ϕ ln

h
(1− ϕ)α−1

i
− bµx + b XT . (17)

Using equations (16) and and (17), it follows that

ψt,T = Et
h
U
0
(WT ) | XT

i
/Et

h
U
0
(WT )

i
=

exp
£
ϕµw − ϕ ln

£
(1− ϕ)α−1¤− bµx + bXT + (ϕ2σ2w − b2σ2x)/2¤

exp [ϕµw − ϕ ln [(1− ϕ)α−1] + (ϕ2σ2w)/2]
= AebXT .

Hence, the asset specific pricing kernel is an exponential function of the cash flow XT

and the price of XT therefore follows an arithmetric random walk. In particular, when

in case 2 θ = 0 and wealth WT and XT are joint lognormal-normal, the price of XT

again follows an arithmetric random walk.

2

The implication of Theorem 2 is that if any of the three conditions hold, then a risk-neutral-

valuation relationship holds for the valuation of options on assets, where the conditional

expectation of the price of the asset at time T follows an arithmetic, normally distributed

random walk. Hence the condiitions for the Brennan (1979) model to hold for options on

normally distributed asset prices are somewhat wider than those found by Brennan.

We now extend the analysis to assets which follow displaced-geometric random walks

(DGRW) as in Rubinstein (1983) and negatively-skewed-geometric random walks (NSGRW)

as in Stapleton and Subrahmanyam (1993). We state the two cases as one theorem. We

have:

Theorem 3 [DGRW (NSGRW) for the forward price]

17



Assume that a representative agent exists with a utility function of the HARA family. Let

the conditional expectation at time t of the asset price XT follow a displaced-geometric

(negatively-skewed-geometric) random walk process, so that:

ln[Et(XT − β)] ∼ N [µx, σx], t ≤ T
(ln[β − Et(XT ] ∼ N [µx, σx], t ≤ T)

Then the forward price Ft(XT ) follows a DGRW (NSGRW) if either:

1. ϕ→ −∞, θ = 1, and α > 0; that is preferences are characterised by a negative expo-
nential utility function, and wealth WT and XT are joint normal-displaced (negatively-

skewed) lognormal.

2. α > 0, ε < 0, θ = 0, that is preferences are CPRA, and wealth WT and XT are joint

lognormal-displaced (negatively-skewed) lognormal.

3. α > 0, ϕ < 0, and WT > − (1−ϕ)θα ; that is preferences are characterised by an extended

power utility function, and wealth WT and XT are joint displaced lognormal-displaced

(negatively skewed) lognormal.

Proof

From Lemma 2 (3) a sufficient condition is that the asset-specific pricing kernel has the

form ψt,T = a(XT −β)α (ψt,T = a(β−XT )α). Using a similar argument to that used in the
proof of Theorem 2 it is then straightforward to show that if either of conditions 1, 2, or 3

obtain then the forward price of XT follows a DGRW (NSGRW). The details are shown in

the appendix.2
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7 Conclusions

We have shown that the same conditions lead to the preservation of random walks and

risk-neutral-valuation relationships for option pricing in the case of assets with lognormal,

normal, displaced lognormal and negatively-skewed lognormal distributions. In an economy,

different assets may well follow different processes. However, the key to whether forward

prices also follow these processes lies with the distribution of aggregate wealth and the

utility function of the representative investor. We have shown that risk-neutral-valuation

relationships hold for each asset class if either one of three conditions hold. Either wealth

is normally distributed and utility is of the constant absolute risk averse type. Or, wealth

is lognormally distributed and wealth is of the constant proportional risk averse type. Al-

ternatively, wealth may be displaced lognormal and wealth is of the HARA class, with a

particular form.
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8 Appendix: Proof of Theorem 3

The proof is similar to the proof of Theorem 1. From Lemma 2 (3) a sufficient condition is

that the asset-specific pricing kernel has the form ψt,T = A(XT −β)α (ψt,T = A(β−XT )α),
for constants A and b.

We will show that any of the conditions 1), 2), and 3) above are sufficient for this condition

to hold.

1. g(WT ) = WT means that WT ∼ N(µw, σ2w). ϕ → −∞, θ = 1, α > 0 implies from

Lemma 1 that

U 0(WT ) = e
−αWT .

Hence

ln[U 0(WT )] = −αWT ,

which is normal since WT is normal. Also, since WT is normal,

Et[U
0
(WT )] = exp

(
−αµw + α2

2
σ2w

)
(18)

Since WT and ln(XT − β) (ln(β − XT )) are joint normal we can write the linear
regression:

−αWT = a+ b ln(XT − β) + ² (19)

(−αWT = a+ b ln(β −XT ) + ²)

where ln(XT − β)(ln(β − XT )) is independent of ². From (19) it follows, taking

variances

α2σ2w = b
2σ2x + σ2²

and hence

vart[ln(U
0
(WT ))|XT ] = σ2² = α2σ2w − b2σ2x (20)

Also, from (19) it follows, taking expectations that

−αµw = a+ bµx
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and hence the conditional expectation

Et[ln(U
0
(WT ))|XT ] = a+ b ln(XT − β) = −αµw − bµx + b ln(XT − β)

(Et[ln(U
0
(WT ))|XT ] = a+ b ln(β −XT ) = −αµw − bµx + b ln(β −XT )).

Substituting, it then follows that

ψt,T = Et
h
U
0
(WT ) | XT

i
/Et

h
U
0
(WT )

i
=

exp
£−αµw − bµx + b ln(XT − β) + (α2σ2w − b2σ2x)/2¤

exp [−αµw + (α2σ2w)/2]
= A(β −XT )b.

(ψt,T = Et
h
U
0
(WT ) | XT

i
/Et

h
U
0
(WT )

i
=

exp
£−αµw − bµx + b ln(β −XT ) + (α2σ2w − b2σ2x)/2¤

exp [−αµw + (α2σ2w)/2]
= A(XT − β)b.)

2

2. Cases 2 and 3

g(WT ) = ln

∙
WT +

(1− ϕ)θ
α

¸
with θ = 0, in case 2, implies by Lemma 1 that

U 0(WT ) =

µ
αWT

1− ϕ + θ

¶ϕ
is lognormal, and has logarithmic mean

Et

∙
ln

µ
αWT

1− ϕ + θ

¶ϕ¸
= ϕµw − ϕ ln

h
(1− ϕ)α−1

i
and logarithmic variance

V art

∙
ln

µ
αWT

1− ϕ + θ

¶ϕ¸
= ϕ2σ2w

It follows that

Et
h
U
0
(WT )

i
= exp

½
ϕµw − ϕ ln

h
(1− ϕ)α−1

i
+
1

2
ϕ2σ2w

¾
. (21)

SinceWT andXT are joint displaced lognormal-displaced lonormal (negatively skewed

lognormal), ln
³
αWT
1−ϕ + θ

´
and ln(XT −β)(ln(β−XT )) are joint normal, and hence we

can write the linear regression:
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ϕln

µ
αWT

1− ϕ + θ

¶
= a+ b ln(XT − β) + ²

(ϕln

µ
αWT

1− ϕ + θ

¶
= a+ b ln(β −XT ) + ²)

where XT is independent of ². It then follows, taking variances

ϕ2σ2w = b
2σ2x + σ2²

and hence

vart[ln(U
0
(WT ))|XT ] = σ2² = ϕ2σ2w − b2σ2x. (22)

Also, from (22) it follows, taking expectations that

ϕµw − ϕ ln
h
(1− ϕ)α−1

i
= a+ bµx

and hence the conditional expectation

Et[ln(U
0
(WT ))|XT ] = a+ b ln(XT − β) = ϕµw − ϕ ln

h
(1− ϕ)α−1

i
− bµx + b ln(XT − β).

(Et[ln(U
0
(WT ))|XT ] = a+ b ln(β −XT ) = ϕµw − ϕ ln

h
(1− ϕ)α−1

i
− bµx + b ln(β −XT ).)

It then follows that

ψt,T = Et
h
U
0
(WT ) | XT

i
/Et

h
U
0
(WT )

i
=

exp
£
ϕµw − ϕ ln

£
(1− ϕ)α−1¤− bµx + bln(XT − β) + (ϕ2σ2w − b2σ2x)/2¤

exp [ϕµw − ϕ ln [(1− ϕ)α−1] + (ϕ2σ2w)/2]
= A(XT − β)b.

(ψt,T = Et
h
U
0
(WT ) | XT

i
/Et

h
U
0
(WT )

i
=

exp
£
ϕµw − ϕ ln

£
(1− ϕ)α−1¤− bµx + bln(β −XT ) + (ϕ2σ2w − b2σ2x)/2¤

exp [ϕµw − ϕ ln [(1− ϕ)α−1] + (ϕ2σ2w)/2]
= A(β −XT )b).

2
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