The Pricing and Hedging of Interest-Rate Derivatives: Theory and Practice

Ser-Huang Poon $^{\! 1},$ Richard C. Stapleton $^{\! 2}$ and Marti G. Subrahmanyam $^{\! 3}$

April 28, 2005

¹Manchester Business School

²Manchester Business School

³Stern School of Business

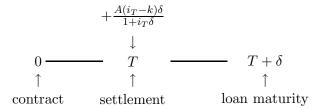
1 Definition of Interest-Rate Derivative Contracts

In this section we provide definitions (using cash flow diagrams) of the basic vanilla interest-rate derivatives. These can be classified as single period (FRA, caplet, Libor futures, option on Libor futures) and as multi-period (swaps, caps, swaptions).

Forward Rate Agreement (FRA)

A forward rate agreement (FRA) is an agreement to exchange fixed-rate interest payments at a rate k for Libor payments, on a principal amount A for the loan period T to $T + \delta$.

The time scale for payments on a T-maturity FRA is shown below:



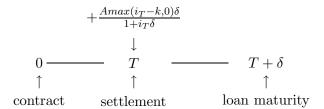
Here, t=0 is the contract agreement date, T is the settlement date for the contract, and $T+\delta$ is the date on which the notional loan underlying the FRA is repaid.

- A is the principal of the underlying loan
- i_t is the spot Libor interest rate at time t
- k is the strike rate of the contract
- δ is the loan period

Interest-Rate Caplet

An interest-rate caplet (floorlet) is an option to enter a long (short) FRA at time T at a fixed rate k

The time scale for payments on a T-maturity caplet is shown below:



Here, t = 0 is the contract agreement date, T is the settlement date, and $T + \delta$ is the date on which the notional loan underlying the FRA is repaid.

- A is the principal of the underlying loan
- \bullet i_t is the spot Libor interest rate at time t
- \bullet k is the strike rate of the contract
- δ is the loan period

Interest-Rate Futures

A Libor Futures contract is an agreement made at time t = 0 to pay or receive the difference between $H_{t,T}$, the futures price at time t and the price at time t + 1, $H_{t+1,T}$, daily until the maturity of the contract. The daily cash flows on a T-maturity long futures, contracted at t = 0 at a futures price $H_{0,T}$ is shown below:

$$+(H_{1,T}-H_{0,T})A\delta...+(H_{t+1,T}-H_{t,T})A\delta.... +(H_{T,T}-H_{T-1,T})A\delta$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \qquad 1 \qquad \cdots \qquad t \qquad t+1 \qquad \cdots \qquad T$$

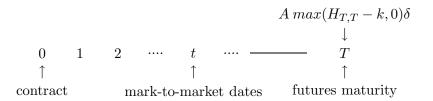
$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
contract mark-to-market dates futures maturity

- $H_{t,T}$ is the Libor futures price at time t
- A is the principal of the contract
- δ is the loan period

Options on Interest-Rate Futures

A Libor Futures option is an option to enter an interest-rate futures contract at a fixed rate k

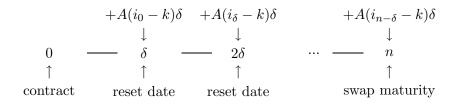
A European-style futures call option with maturity T has a payoff:



- $H_{T,T}$ is the Libor futures price at time T
- A is the principal of the contract
- δ is the loan period
- \bullet k is the strike rate

Interest-Rate Swap

An interest-rate swap is an agreement made at time 0 to exchange fixed-rate interest payments at a rate k for Libor payments, on a principal amount A every δ years, over the loan period 0 to n.



- \bullet A is the principal of the underlying loan
- ullet i_t is the Libor interest rate at time t
- k is the strike rate of the contract
- δ is the loan period

Swaption

A European-style swaption, with strike rate k, gives the right to enter an n-year swap on the option maturity date T. The cash flows on a pay-fixed swaption (payer swaption) are shown below.

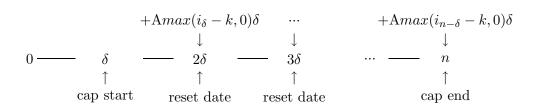
$$0 \xrightarrow{\qquad \qquad } T \xrightarrow{\qquad \qquad } T + \delta \xrightarrow{\qquad \qquad } T + 2\delta \xrightarrow{\qquad \qquad } T + n$$
 option maturity reset date reset date reset date swap maturity

- s_T is the swap rate at time T
- A is the principal of the underlying loan
- i_t is the Libor interest rate at time t
- \bullet k is the strike rate of the contract
- δ is the loan period

8

Interest-Rate Cap

An interest-rate cap, with strike rate k, gives the right to enter a series of FRAs every δ years over n years.



- A is the principal of the underlying loan
- \bullet i_t is the Libor interest rate at time t
- k is the strike rate of the contract
- δ is the loan period

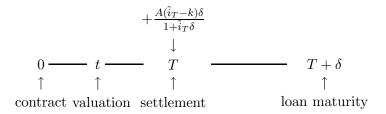
An interest-rate cap is equivalent to a portfolio of put options on one-period zero-coupon bonds.

2 The Valuation of Interest-Rate Derivative Contracts

The definitions in the previous section show the cash flows given that the derivative is contracted at date t=0. In this section we value these products at a date t, which as a special case could be t=0. The FRAs and swaps are valued using standard discounting techniques. The options are valued using different versions of the Black model.

Valuation of an FRA

1. Long (time t = 0 contract) FRA Payoff



2. Short (time t contract) FRA Payoff

3. Reversed FRA Payoff

FRA value at time t:

$$FRA_{t,T,\delta}(k) = A(f_{t,T} - k)\delta B_{t,T+\delta}$$

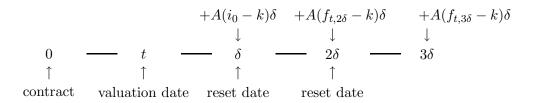
- ullet $f_{t,T}$ is the Libor forward rate at time t for delivery at T
- $B_{t,T+\delta}$ is the price at t of a bond paying \$1 at $T+\delta$

11

Valuation of an Interest-Rate Swap

Assuming that the valuation date t is $0 < t < \delta$:

Swap Reversed Cash Flows



Swap: Value at Time t

$$swap_{t,0,n,\delta}(k) = \\ A(i_0 - k)\delta B_{t,\delta} \\ + A(f_{t,2\delta} - k)\delta B_{t,2\delta} \\ + A(f_{t,3\delta} - k)\delta B_{t,3\delta} \\ \downarrow \\ 0 \qquad \qquad t \qquad \qquad \delta \qquad \qquad 2\delta \qquad \qquad 3\delta \\ \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
 contract valuation date reset date

- $swap_{t,0,n,\delta}(k)$ is the value at t of an n-year δ -reset swap contracted at time t=0 at a strike rate k
- $f_{t,T}$ is the Libor forward rate at time t for delivery at T
- $B_{t,i\delta}$ is the price at t of a bond paying \$1 at $i\delta$

The Black Model for a Caplet

If the BGM process for forward rates holds, the value of a caplet at time t, with maturity T is given by:

$$caplet_{t,T,\delta}(k) = \frac{A}{1 + f_{t,T}\delta} \delta[f_{t,T}N(d_1) - kN(d_2)]B_{t,T}$$
(1)

where

$$d_1 = \frac{\ln(\frac{f_{t,T}}{k}) + \frac{\sigma^2 \tau}{2}}{\sigma \sqrt{\tau}}$$
$$d_2 = d_1 - \sigma \sqrt{\tau}$$
$$\tau = T - t$$

- $caplet_{t,T,\delta}(k)$ is the value at t of a T-year caplet at a strike rate k
- \bullet $f_{t,T}$ is the Libor forward rate at time t for delivery at T
- $B_{t,T}$ is the price at t of a bond paying \$1 at T
- σ is the volatility of the Libor, i_T

The Black Model for Libor Futures Options

Assuming these are European-style, marked-to-market options, then a put on the futures price has a futures value

$$P_{t,T}(k) = [(1 - H_{t,T})N(d_1) - (1 - K)N(d_2)]$$

where

$$d_1 = \frac{\ln\left(\frac{1 - H_{t,T}}{1 - K}\right) + \frac{\sigma^2 \tau}{2}}{\sigma \sqrt{\tau}}$$
$$d_2 = d_1 - \sigma \sqrt{\tau}$$

where $H_{t,T}$ is the futures price and K is the strike price.

The futures price of the option can be established for Libor options by assuming that the futures rate follows a lognormal diffusion process (limit of the geometric binomial process as $n \to \infty$).

- $P_{t,T}(k)$ is the value at t of a T-year futures option at a strike rate k
- $H_{t,T}$ is the Libor futures price at time t for delivery at T
- σ is the volatility of Libor

The Black Model for Caplets/Floorlets using Equivalent Bond Options

If the (continuously compounded) interest rate is normally distributed, the price of a floorlet on Libor is given by

$$Floorlet_{t,T,\delta}(k) = [B_{t,T+\delta}N(d_1) - KB_{t,T}N(d_2)] (1 + k\delta)$$

where

$$d_1 = \frac{\ln\left(\frac{F_{t,T,T+\delta}}{K}\right) + \frac{\sigma'^2 \tau}{2}}{\sigma' \sqrt{\tau}}$$
$$d_2 = d_1 - \sigma' \sqrt{\tau}$$
$$K = \frac{1}{1 + k\delta}$$
$$\tau = T - t$$

Here, the bond forward price is assumed to follow a lognormal diffusion process.

- $floorlet_{t,T,\delta}(k)$ is the value at t of a T-year floorlet at a strike rate k
- $B_{t,T+i\delta}$ is the price at t of a bond paying \$1 at $T+i\delta$
- σ' is the volatility of the zero-coupon bond price
- K is the strike price of the equivalent bond option

3 Parity Relationships for Interest-Rate Options

Notation

- P_t value of put option at time t
- C_t value of call option at time t
- K strike price
- T option maturity

A long FRA at k is equivalent to $(1 + k\delta)$ short forward contracts on a one-period zero-coupon bond.

A caplet on Libor at k is equivalent to $(1 + k\delta)$ put options on a one-period zero-coupon bond.

An long interest-rate swap (to pay fixed, receive Libor) is equivalent to a short forward contract on an n-year coupon bond, with coupon k.

A European-style payer swaption (to pay fixed, receive Libor) is equivalent to a put option on an n-year coupon bond, with coupon k, and with a strike price of par.