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1 Definition of Interest-Rate Derivative Con-
tracts

In this section we provide definitions (using cash flow diagrams) of the ba-
sic vanilla interest-rate derivatives. These can be classified as single period
(FRA, caplet, Libor futures, option on Libor futures) and as multi-period
(swaps, caps, swaptions).
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Forward Rate Agreement (FRA)

A forward rate agreement (FRA) is an agreement to exchange fized-rate in-
terest payments at a rate k for Libor payments, on a principal amount A for
the loan period T to T + 9.

The time scale for payments on a T-maturity FRA is shown below:
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Here, t = 0 is the contract agreement date, T is the settlement date for the
contract, and 7"+ ¢ is the date on which the notional loan underlying the
FRA is repaid.

e A is the principal of the underlying loan

e i, is the spot Libor interest rate at time ¢

e [ is the strike rate of the contract

e ¢ is the loan period
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Interest-Rate Caplet

An interest-rate caplet (floorlet) is an option to enter a long (short) FRA at
time T at a fizved rate k

The time scale for payments on a T-maturity caplet is shown below:
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Here, t = 0 is the contract agreement date, T is the settlement date, and
T + 0 is the date on which the notional loan underlying the FRA is repaid.
e A is the principal of the underlying loan
e i, is the spot Libor interest rate at time ¢
e L is the strike rate of the contract

e § is the loan period
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Interest-Rate Futures

A Libor Futures contract is an agreement made at time ¢ = 0 to pay or
receive the difference between H, r, the futures price at time ¢ and the price
at time ¢+ 1, H;4 7, daily until the maturity of the contract. The daily cash
flows on a T-maturity long futures, contracted at ¢ = 0 at a futures price
Hy r is shown below:
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e [, 7 is the Libor futures price at time ¢
e A is the principal of the contract

e § is the loan period
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Options on Interest-Rate Futures

A Libor Futures option is an option to enter an interest-rate futures contract
at a fixed rate k

A European-style futures call option with maturity 7" has a payoff:
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Hrp r is the Libor futures price at time T

A is the principal of the contract

0 is the loan period

k is the strike rate
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Interest-Rate Swap

An interest-rate swap is an agreement made at time 0 to exchange fixed-rate
interest payments at a rate k for Libor payments, on a principal amount A
every & years, over the loan period 0 to n.
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A is the principal of the underlying loan

i, 1s the Libor interest rate at time ¢

k is the strike rate of the contract

0 is the loan period
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Swaption

A European-style swaption, with strike rate k, gives the right to enter an
n-year swap on the option maturity date 7. The cash flows on a pay-fixed
swaption (payer swaption) are shown below.
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st is the swap rate at time T’

A is the principal of the underlying loan

i, 1s the Libor interest rate at time ¢

k is the strike rate of the contract

0 is the loan period
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Interest-Rate Cap

An interest-rate cap, with strike rate k, gives the right to enter a series of
FRAs every § years over n years.
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A is the principal of the underlying loan

i, 1s the Libor interest rate at time ¢

k is the strike rate of the contract

0 is the loan period

An interest-rate cap is equivalent to a portfolio of put options on one-period
zero-coupon bonds.
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2 The Valuation of Interest-Rate Derivative
Contracts

The definitions in the previous section show the cash flows given that the
derivative is contracted at date ¢ = 0. In this section we value these products
at a date t, which as a special case could be t = 0. The FRAs and swaps are
valued using standard discounting techniques. The options are valued using
different versions of the Black model.
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Valuation of an FRA
1. Long (time ¢t = 0 contract) FRA Payoff
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2. Short (time t contract) FRA Payoff
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3. Reversed FRA Payoff
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FRA value at time ¢:
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o f,r is the Libor forward rate at time ¢ for delivery at T’

e B 1.5 is the price at ¢ of a bond paying $1 at 7'+ ¢
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Valuation of an Interest-Rate Swap
Assuming that the valuation date tis 0 <t < §:

Swap Reversed Cash Flows
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o swaptns(k) is the value at ¢ of an n-year d-reset swap contracted at
time ¢t = 0 at a strike rate k

o f,r is the Libor forward rate at time ¢ for delivery at T’

e B ;s is the price at ¢ of a bond paying $1 at i0
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The Black Model for a Caplet

If the BGM process for forward rates holds, the value of a caplet at time t,
with maturity 7T is given by:
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caplet, 75(k) is the value at ¢ of a T-year caplet at a strike rate k

fi,r is the Libor forward rate at time ¢ for delivery at T

B 7 is the price at t of a bond paying $1 at T

o is the volatility of the Libor, iy
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The Black Model for Libor Futures Options

Assuming these are European-style, marked-to-market options, then a put
on the futures price has a futures value

Pir(k)=[(1— Hyr)N(d1) — (1 = K)N(d2)]

where
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where H, r is the futures price and K is the strike price.

d1:

The futures price of the option can be established for Libor options by as-
suming that the futures rate follows a lognormal diffusion process (limit of
the geometric binomial process as n — 00).

o P, (k) is the value at ¢ of a T-year futures option at a strike rate k
e [, r is the Libor futures price at time ¢ for delivery at T’

e o is the volatility of Libor
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The Black Model for Caplets/Floorlets using Equivalent Bond Op-
tions

If the (continuously compounded) interest rate is normally distributed, the
price of a floorlet on Libor is given by
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Here, the bond forward price is assumed to follow a lognormal diffusion
process.
o floorlet,rs(k) is the value at ¢ of a T-year floorlet at a strike rate k
e B 1.5 is the price at t of a bond paying $1 at 7"+ id
e ¢’ is the volatility of the zero-coupon bond price

e [ is the strike price of the equivalent bond option
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3 Parity Relationships for Interest-Rate Op-
tions

Notation

e P, value of put option at time ¢
e (; value of call option at time t
e K strike price

e 7" option maturity

A long FRA at k is equivalent to (1 + k§) short forward contracts on a
one-period zero-coupon bond.

A caplet on Libor at k is equivalent to (1 + kd) put options on a one-period
zero-coupon bond.

An long interest-rate swap (to pay fixed, receive Libor) is equivalent to a
short forward contract on an n-year coupon bond, with coupon k.

A FEuropean-style payer swaption (to pay fixed, receive Libor) is equivalent
to a put option on an n-year coupon bond, with coupon k, and with a strike
price of par.



