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1 Introduction

Economic agents often face both tradable and non-tradable risks. Examples of tradable
risks are the risks in foreign exchange and interest-rate markets. Examples of risks that
may be non-tradable are the risk of labor income and the risk of production losses. These
non-tradable risks are called background risks.

As an example, consider the effect of labor-income risk on the portfolio choice of an investor.
There are three levels at which this risk can have an impact. First, to the extent that labor
income has a positive mean, this affects the endowment of the investor. For example, a
positive non-stochastic labor income increases the endowment of the investor and thereby
affects his/her risk aversion. Second, to the extent that a stochastic labor income is corre-
lated with the return on investments available in the market, the background risk of labor
income creates a hedging demand for the marketable investments. The investor will buy
stocks which are negatively correlated with his/her labor income. At a third level, the pure
(orthogonal) component of the labor-income risk can induce precautionary behaviour of the
investor. It is this third effect that has been analysed in the background risk literature,
by studying the impact of an independent, zero-mean risk on the demand of an agent for
marketable risks. The fact that this third type of effect can have a significant influence
in a broad range of problems has been highlighted, for example, by Franke, Stapleton and
Subrahmanyam (1998) in the case of portfolio demand and Weil (1992) in the case of asset
prices. Various papers have analysed the impact of certain types of increases in background
risk on the demand for insurance, where the amount of insurance is measured by the coin-
surance rate and the deductible (see, for example Eeckhoudt and Kimball (1992) and Meyer
and Meyer (1998)).

Recent advances in the theory of risk bearing have concentrated on the effect of a non-
tradable background risk on the risk aversion of an agent to a second independent risk.
For example, Gollier and Pratt (1996) define a rather general class of utility functions such
that risk-averse individuals become even more risk averse towards a risk, when a second,
independent, unfair background risk is added. They compare the risk aversion of an agent
with no background risk to that of an agent who faces the background risk. They term
the set of functions under which the agent becomes more risk averse, the class of "risk-
vulnerable” utility functions. The set of risk-vulnerable functions is larger than the set of
proper risk averse functions introduced earlier by Pratt and Zeckhauser (1987), who consider
utility functions such that the expected utility of an undesirable risk is decreased by the
presence of an independent, undesirable risk. Kimball (1993) has considered the effect of
the [even larger| set of expected marginal utility increasing background risks. This led
him to define the more restrictive class of standard risk averse utility functions. Standard
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risk aversion characterizes those functions where the individual responds to an expected
marginal utility increasing background risk by reducing the demand for a marketed risk.
Kimball shows that standard risk averse functions are characterized by positive, decreasing
absolute risk aversion and absolute prudence. The set of standard risk averse functions
is a subset of the set of proper risk averse functions, which, in turn, are a subset of the
risk vulnerable functions, as discussed by Gollier and Pratt (1996, pp 1118-9). In a related
paper, Eeckhoudt, Gollier and Schlesinger (1996) extend this analysis by considering a
rather general set of changes in background risk, which take the form of first or second
order stochastic dominance changes. They establish a set of quite restrictive conditions
on the utility function such that agents become more risk averse when background risk
increases in this sense.

The existing literature discusses the conditions under which an agent reacts to background
risk by buying less of a risky asset, when faced with the choice between a single risky
asset and a risk-free asset. Such a risky asset can be thought of as a portfolio of state-
contingent claims. We consider an economy where the agent can buy state-contingent
claims individually. We then ask the question: how is the agent’s demand for these claims
affected by an increase in background risk? In a state-contingent claims model, risk averse
behaviour can be characterized by the slope of the demand curve for state-contingent claims.
For example, in the limiting case of extreme risk aversion, the agent buys an equal amount
of claims on each state, regardless of the price of the claims. A less risk-averse agent buys
a schedule of claims weighted towards claims that are relatively cheap, i.e., a downward
sloping demand curve. Intuitively, it seems reasonable, in this economy, to characterize
more risk-averse behaviour as having a flatter demand curve for state-contingent claims.

The purpose of this paper is to investigate restrictions on utility functions which guarantee
more risk averse behaviour in the presence of an increased, independent, zero-mean back-
ground risk, when the agent faces a choice between state-contingent claims. Agents are
said to be generalized risk averse, if they react to a simple increase in background risk, by
changing their demand for contingent claims in such a way that the slope of the demand
function becomes smaller everywhere. A simple increase in risk is a deterministic, mono-
tonic transformation in risk as defined by Meyer and Ormiston (1989). In this paper we
analyse the set of simple increases in background risk. We use the concept of generalized
risk aversion to extend risk vulnerability in two ways. First, instead of comparing a positive
and a zero level of background risk, simple increases in risk are analysed. Second, instead of
studying the impact of an increase in background risk on derived risk aversion, we examine
the impact of an increase in background risk on the demand for state-contingent claims.

The research question is: what is the set of utility functions inducing generalized risk
aversion? Equivalently, what are the necessary and sufficient properties of utility functions
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for a simple increase in background risk to reduce the slope of the demand curve for state-
contingent claims everywhere? In section 2, we define the concepts of generalized risk
aversion and simple increases in background risk which are central to the anaysis of the
paper. In section 3, we present our main result. Agents are generalized risk averse if and
only if they have positive declining absolute risk aversion and prudence. These conditions
are precisely the conditions for standard risk aversion. They are sufficient for the slope
of the demand function for state-contingent claims to become smaller everywhere. What
is more surprising is that these conditions are also necessary for generalized risk aversion.
Necessity arises from the fact that the slope of the demand function for contingent claims
must become less steep at all levels. As Kimball argues, declining absolute risk aversion and
declining absolute prudence are natural attributes of the utility function. They are shared,
also, by the HARA class of functions with an exponent less than one. The larger set of
risk-vulnerable utility functions, used by Gollier and Pratt, is not restrictive enough, when
we consider the effect of simple increases in background risk on the slope of the demand
function. Our result therefore adds to the case for the standard risk-averse functions to be
the natural class of functions to use when analysing the impact of background risk.
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2 Generalized Risk Aversion

Gollier (2001) considers a model where the agent can buy state-contingent claims on con-
sumption, given no background risk. Let ¢ be the probability deflated price of obtaining one
unit of consumption if a state occurs and obtaining nothing otherwise. Then, in this model,
the higher is ¢ for a given state, the lower is the agent’s demand for claims on that state, w.
In other words, the demand function, w(¢), that relates the consumption in a state to the
price, is downward sloping. Gollier [Proposition 51] shows that, if two agents with utility
functions u; and uo have the same endowment, and if u; is more risk averse than us, then
the demand function of agent 1, wy(¢), ‘single-crosses from below’ the demand function of
agent 2, wo(¢). This single-crossover property is illustrated in Figure 1. Gollier goes on to
conclude that “risk-vulnerable investors will select a safer consumption plan”, when they
face background risk. Hence, if a simple increase in background risk raises risk aversion,
then an agent facing an increase in background risk will respond by choosing a demand
function similar to investor 1 rather than that chosen by investor 2, in Figure 1.

Figure 1

Notes for Figure 1:

This figure shows the demand curves for state-contingent claims for two different levels of background
risk. Demand curve 1 represents a higher level of background risk than 2, and is, therefore, less
steep.
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However, Gollier’s analysis highlights a problem. Even though agent 1 is more risk averse
than agent 2, he could have a demand function that has a smaller slope at the crossover
point, but has a greater slope over some range of ¢. This means that the more risk-averse
investor actually exhibits less risk-averse behaviour over some range . As Gollier notes,
the single-crossover property only throws light on local risk-taking behaviour in the range
around the crossover point. In this paper, we wish to look at local risk-taking behaviour
over all ranges, hence we employ a stricter definition of more risk-averse behaviour in the
state-contingent claims model.

If the agent responds to a simple increase in background risk by choosing a demand function
with a smaller slope everywhere, we say that the agent is generalized risk averse. This
concept of generalized risk aversion relates closely to the previously discussed concepts
of ‘risk vulnerability’ and ‘standard risk aversion’. In the case of ‘risk vulnerability’, an
agent responds to the introduction of background risk by reducing his demand for a single
risky asset. In the case of standard risk aversion, an agent responds to a marginal utility-
increasing background risk in the same manner. In the case of generalized risk aversion,
the idea of the response of risk-taking behaviour to a simple increase in background risk is
extended to the demand for state-contingent claims.

We consider the effect of an independent background risk on the demand for state-contingent
claims, using an extension of the analysis of Back and Dybvig (1993), who establish con-
ditions for the optimality of an agent’s demand. We investigate the set of [restrictions on]
utility functions such that the agent responds to simple increases in a zero-mean background
risk by choosing a demand function that has a smaller slope at all price levels. In the context
of this choice problem, we need to restrict the set of changes in background risk to the set
of simple increases as defined by Meyer and Ormiston (1989). We follow this terminology
here.!

Definition 1 (Simple Increases in Background Risk)

Let y be a background risk with E(y) = 0. Then a simple increase in the background risk
changes y to y+ sA(y), with E[A(y)] =0, where A(y) is non-decreasing and continuous in
y, and where s > 0 represents the scale of the increase.

Note that simple increases in background risk leave the rank order of outcomes unchanged.
Continuity of the transformation function A(y), together with the condition E[A(y)] = 0,
guarantees that there exists a yo such that A(yy) = 0. Instead of continuity, we could

!Note that this is in contrast to the use by Eeckhoudt, Gollier and Schlesinger (1995) of the term ’a
simple spread across «’, which allows for more general increases in risk.
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assume directly the existence of yg. In the following analysis, we differentiate with respect
to s to derive the effects of a marginal increase in background risk.

A simple increase in background risk replaces y by y + sA(y), where 0A/dy > 0,Vy, and
where E[A(y)] = 0. Hence, a simple increase in background risk is a change, A(y), that
itself increases with y. An example of a simple increase is a proportionate increase where
A(y) is proportionate to y. We can now formally define generalized risk aversion:

Definition 2 An agent is generalized risk-averse if the absolute value of the slope of his/her
demand function for state-contingent claims w(p) becomes smaller for all ¢, given a simple
increase in background risk.

We consider an agent who can buy a set of contingent claims on future consumption and
faces background risk. The agent’s total income at the end of the period, W, is therefore
composed of an income from tradeable claims, w, plus the background risk y, i.e. W = w+y.
We assume that background risk, y, has a zero mean, and is bounded from below, y > a.
We also assume that total income, W, has a lower bound, W. Hence, w > W —a. Moreover
we assume that y is distributed independently of w. A state of the world determines both
the agent’s income from tradeable claims and the background risk. Let (2, F,P) be the
probability space on which the random variables are defined.

The agent’s utility function is (7). We assume that the utility function is state-independent,
strictly increasing, strictly concave, and four times differentiable on We(W, 0co. We assume
that there exist integrable functions on wef2, ug and w; such that

up(w) < u(W) < up(w)
We also assume that similar conditions hold for the derivatives v'(W), v (W) and v (W).

The agent’s expected utility, conditional on w, is given by the derived utility function, as
defined by Kihlstrom et al. (1981) and Nachman (1982):

v(w) = Ey[u(W)] = Elu(w +y) | w] (1)

where Fy indicates an expectation taken over different outcomes of y. Thus, the agent with
background risk and a von Neumann-Morgenstern concave utility function u(W) acts like an
individual without background risk and a concave utility function v(w).2 The coefficient of
absolute risk aversion is defined as (W) = —u"(W)/u/ (W) and the coefficient of absolute

2See, for example, Eeckhoudt, Gollier and Schlesinger (1996), p. 684.
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prudence as p(W) = —u/"(W)/u"(W). From Kimball (1993), the agent is standard risk
averse if and only if (W) and p(W) are both positive and declining. The absolute risk
aversion of the agent’s derived utility function is defined as the negative of the ratio of the
second derivative to the first derivative of the derived utility function with respect to w,
ie.,

Sw) By (W)
W) ==Ttw) = ", ()] @)

It is worth noting that, in the absence of background risk , #(w) is equal to r(W), the
coefficient of absolute risk aversion of the original utility function.

3 The Effect of Changes in Background Risk on the Optimal
Demand Function for State-Contingent Claims

In this section we derive the necessary and sufficient condition for the utility function to
exhibit generalized risk aversion. We assume that the capital market is perfect. A state of
nature determines both the agent’s tradable income w and his background risk income y.
We partition the state space into subsets of states that differ only in the background risk, y.
We call these subsets “traded states” since they represent states on which state-contingent
claims can be traded. We assume there is a continuum of such states and, for convenience,
we label these states by a continuous variable ze RT. We assume the market, in the traded
states, is complete. We also assume that there exists a pricing kernel, ¢ = ¢(z) with the
property ¢ > 0, where ¢(z) is a continuous function. 3

Let w = g(x) be the agent’s income from the purchase of state-contingent claims. The agent
chooses w = g(z), subject to the constraint that the cost of acquiring this set of claims is
equal to his/her initial endowment. The background risk y affects his/her choice of the
function w = g(z). We assume that the agent has sufficient endowment to ensure that w

3The market is complete in the sense of Nachman (1988). The agent can buy a digital option which pays
one unit of consumption, if & > k, and 0 otherwise, VkeR™. The price of such an option is

| s
k
where ¢(z) is the pricing kernel and the probability density function is f(z). A contingent claim is a

contract (a portfolio of digital options) paying one unit of consumption if ze[k, k +n) and nothing otherwise,
for positive, infinitely small 7.
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can be chosen to obtain W > W in all traded states. We also assume certain properties
of the utility function, in addition to those assumed in the previous section. First, the
marginal utility has the limits:

u' (W) — oo if W — W,
u' (W) = 0if W — oo.
Second, the risk aversion goes to zero at high levels of income, i.e.
r(W) = 0if W — oc.

These reasonable restrictions are satisfied, for example, by the HARA class with an exponent
less than 1.

The agent solves the following maximization problem?*:

max Ey[v(w)] = Ex[v(g(z))] (3)
w=g(x)

st B [(9(@) = °(@))g(x)| =0

In the budget constraint, w® = ¢°(z) is the agent’s endowment of claims. ¢(z), the pricing
kernel, is given exogenously, with E[¢(z)] = 1. The maximisation problem (3) is a standard
state-preference maximisation problem. The expectation, F.(.), is taken only over the
traded states. Note that the background risk has only an indirect impact on problem (3)
through its effect on the derived utility function. This is defined by equation (1) as the
expected value of utility over different outcomes of y, given the traded income w.

The first order condition for a maximum is

V(g(@)) = Ap(z),

or simply
V'(w) = A, (4)

where A is a positive Lagrange multiplier which reflects the tightness of the budget con-
straint. Equation (4) holds as an equality since, by assumption, u'(W) — oo for W — W
and v'(W) — 0 for W — oco. The demand for claims in equation (4) can be shown to

“See also Hirshleifer and Riley (1992, p.46) for a discussion of the demand for state-contingent claims.
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be optimal and unique under some further finiteness restrictions.® This follows from the
results of Back and Dybvig (1993).

From the first order condition (4), it follows that we can define a function w = w(¢) =
/D (Ap). Hence, given the derived utility function and the initial endowment, the demand
for claims contingent on a traded state  depends only on ¢(x). Thus w(¢) is a deterministic
function relating the demand for state-contingent claims to the pricing kernel. It follows
from our assumptions that Ow/d¢ and 8%w/0¢pds exist.

Our aim is to find the necessary and sufficient conditions on the utility function, which
guarantee that the agent’s demand function becomes less steep given a simple increase in
background risk, i.e. the agent is generalized risk averse. It will be shown that the conditions
for generalized risk aversion are the same as those for standard risk aversion.

Differentiating equation (4) with respect to ¢, for a given level of background risk, and
dividing by A¢, yields the slope of the demand function

2= L oy )

Suppose that background risk increases the derived risk aversion of the agent, 7(w). It
follows from equation (5) that the background risk affects the slope of the demand function.
We now consider the effect of changes in the level of background risk, assuming that the
pricing function ¢(z) is given. From equation (5) it appears at first sight that the slope of
the demand function becomes less steep whenever the increase in background risk increases
the agent’s derived risk aversion. In fact, it follows from Gollier (2001, Proposition 51) that:

Proposition 1 Suppose that an increase in background risk raises the agent’s derived risk
aversion, everywhere. Then the new demand curve for state-contingent claims intersects

*E[we] < oo for any A > 0 and each w satisfying (4) is assumed.
SConsider the function
F(w,¢) = ' () — Ap = 0.
The partial derivative F,, exists and is continuous, since the utility function u(w + y) and its first three

derivatives are assumed to exist and to be integrable. Also F,, # 0 for w < oo. Hence, by the implicit
function theorem, the function w = w(¢) is differentiable with

Ow/dp = _%.

Also, since y is differentiable in s, and since Fy and F, are differentiable in y, then Fy and F,, are also
differentiable in s. Tt follows that 9%w/0¢ds also exists.
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the original one once from below.”

Proof: At an intersection of the new demand curve, wi(¢), and the original demand curve,
wa(p), w1 = we so that, by equation (5), Ow;/d¢ > Ows /I follows from 71 > 9. A second
intersection would require dw;/0¢ < Owy/d¢p, which contradicts (5). Also, at least one
intersection must exist, in order for the budget constraint to be satisfied.O0

However, as noted by Gollier (2001), the one-intersection property does not imply that the
new demand curve is less steep than the original one, everywhere. This is because a change
in background risk, affects #(w) both directly and through the induced change in w.® The
main result of the paper is Proposition (2).

Proposition 2 (Generalized Risk Aversion)

Assume any simple increase in an independent, zero-mean background risk. Let u'(W) > 0
and u" (W) < 0, where We(W,00). Suppose that u' (W) — oo for W — W and that
w'(W) — 0 and r(W) — 0, for W — oo. Then
d [Ow
— | =[>0,V
s {aqs] >0, V(¢,y,s)
—

the utility function is standard risk averse.

We first establish three lemmas which are required in the proof. We have

Lemma 1 Suppose that v'(W) — oo for W — W, then r(W) — oo and p(W) — oo for
W —W.

Proof: u'(W) — oo, for W — W, implies dlnu'(W)/OW — —oo® and hence r(W) — oo.
Also, since for W — W, ' < 0,p > r, and hence p(W) — oo. O

"The one intersection property is illustrated in Figure 1.

SDifferentiating equation (5) once more with respect to ¢ reveals that declining absolute risk aversion
implies convexity of w(¢). In addition, as pointed out by the referee, to the left of the crossover point in
Figure 1, w1 < ws implies that #1(w1) > 72(w2), and hence dwi/d¢ > dw2/d¢$ by equation (5). However,
to the right of the crossover point, declining risk aversion is not sufficient to guarantee the result.

9Starting from a finite value of u'(w),u'(w) = oo for w — W requires that the growth rate of u'(w) —
—00.
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The second lemma establishes the equivalence of declining risk aversion and declining de-
rived risk aversion. We have:

Lemma 2 7' (w) <0 for any background risk < r'(W) <0

Proof: Kihlstromet. al. (1981) and Nachman (1982) have shown that declining risk aversion
implies declining derived risk aversion. Conversely, declining derived risk aversion implies
declining risk aversion of u(W). This follows from the case of small background risks.00

The third lemma establishes a condition for declining prudence, in the case of simple changes
in background risk:

Lemma 3 For simple increases in background risk,

d { o' (w)/0s

3 |~ 90 (w) 0w >0&p' (W) <0

Proof: See Appendix.

We now present the proof of Proposition (2).

Proof of Proposition (2): Totally differentiating equation (4) with respect to s yields

o' (w) N o (w) ow  dX

s I (6)

Substituting A from equation (4) then yields

o' (w) o(w)Oow dlnX ,
9s | ow os  ds v(w)-

Hence, the effect of the background risk on the demand for claims is given by

ow  dln) 1 o' (w)/0s

s ds Pw) o (w)/ow ™
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The Proposition is concerned with the conditions under which
d {aw] d {aw]
— || === =] >0.
ds [ 0¢ dp [ 0s]| —
We investigate these conditions by looking at the behaviour of the two terms in equation

(7).

Sufficiency of Standard Risk Aversion: First, we show that the first term in (7) is negative,
while the second term is positive. In order to satisfy the budget constraint, dw/ds has
to be positive in some traded states and negative in others. Given positive prudence,
o' (w)/ds > 0, so that the second term in (7) is positive. It follows that the first term must
be negative, i.e. 482 > 0, hence 3_)‘ > 0. We can now investigate

ds s =
d [Bw]
d¢ | 0s ]’
by taking the two terms in (7) one-by-one. First, the (negative) first term increases with ¢,
since

o _ orow
op  Ow O
is positive. This follows from dw/d¢ < 0 ( see equation (5)) and 07/0w < 0 (which in turn

follows from Or/0w < 0 and Lemma 2). Second, the (positive) second term increases in ¢,
given declining prudence (see Lemma 3). Hence

d [811)}
d¢ | Os
is positive given standard risk aversion.

Necessity of Standard Risk Aversion: We establish necessity of standard risk aversion by
taking the special case of a small background risk. Also, we assume ¢ converges in prob-
ability to a degenerate distribution, ¢g. By assuming w(¢g) is, in turn, large [small], we
show that the first [second] term in (7) dominates. For the first term in (7) to increase in
¢, declining risk aversion is required. For the second term in (7) to increase in ¢, declining
prudence is required. Hence, to cover both of these possibilities, standard risk aversion is
required. First, we consider the term —dIn \/ds.

We have from equation (4),

Bl (w)] = Bl (w + )] = B(\$) = A
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and A\ d d
= EE[’U,I(’UJ +y)] = %E[u’(w — )],

where ¢ = 1/(w) is the precautionary premium as defined by Kimball(1990). Hence,

Assume that we start from a position of no background risk, s = 0. In this case, ¥ = 0,
and 0v/0w = 0. Since, for small background risks with variance o2, the precautionary
premium is'’

1
’l/) = Ep(w)oja
we have
oy L oo
s 2p 0s

It follows that
A _ gl a_w_a_w]}_ tw) |22~ L) 27
ds E{u (w) {63 ds| ) B ui(w) 0s 2p(w) 0s '

Now we assume that ¢ converges to the degenerate distribution ¢g, in probability. Since
we can write

dA

where f is a continuous, uniformly integrable function, then it follows that

d\ 1 802]

a5 u" (wo) [—ap(wo)g

where wy = w(¢yg), since dwy/ds = 0, for the case of the degenerate distribution, ¢y.
Dividing by A = u/(wyg),

dln ) . u'(wp) | 1 (w )G;UQ
ds u! (wp) P\ s
and hence
_dlnx (o) 1 ( )612
ds o) PR g

10This follows by analogy with the Pratt-Arrow argument for the risk premium, since initially there is no
background risk.
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Substituting in (7), we now have

20— r(wo) [

1 802] -1 o' (w)/ds
Fw)  (w)/ow’

Ep(wo)g

Starting with no background risk, the term

o'(-)/os 1 Oo?
"oy jow ~ 2P s

since 09 /0w = 0. Hence, we can write

ow do? 1 Do

o r(wo) Ep(wmgl 7 3P0 G 0

Differentiating (8) with respect to ¢, we then have

2[5 - 2154 - {r<wo> [%w‘%z] ) ép'(ma"z} O

Since dw/d¢ < 0, the condition for a smaller slope becomes

=

"w 02
oy g ) G <o )

1 o2 ]

r(wo) [gp(wo)g

=

To establish the necessity of declining absolute risk aversion, we choose ¢ such that wy —
W. By Lemma 1, hence, r(w) — oo and p(wg) — oo, for w — W. Therefore, #'(w) > 0
implies that the first term in equation (9) — oo. Then, since the second term in (9) is
independent of wy, # < 0 and by Lemma 2, ' < 0 is required for the condition (9) to hold.
r’ <0 also establishes the necessity of positive prudence, p > 0.

To establish necessity of declining absolute prudence, we choose ¢g such that wy — oo
and hence, by assumption r(wp) — 0. Then r'(wg) = r(wp)[r(wo) — p(wp)] — 0 implies
r(wo)p(wo) — 0. Hence the first term in equation (9) — 0. Then, since the second term in
(9) is independent of wg, p’ < 0 is required for the condition (9) to hold. Hence standard
risk aversion is a necessary condition for a smaller slope.O

Proposition 2 allows us to analyze the effect of any marginal simple increase in a zero-
mean, independent background risk, given that this increase has a negligible impact on the
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prices of state-contingent claims. Since a finite increase in background risk is the sum of
marginal increases, the sufficiency condition in Proposition 2 also holds for finite increases
in background risk. Proposition 2 says that a simple increase in background risk will reduce
the steepness of the slope of this agent’s demand function everywhere. As can be seen
from Figure 1, the agent reacts to a simple increase in background risk by purchasing more
claims in traded states for which the price ¢ is high, financing the purchase by selling
some claims in the traded states with low prices. Proposition 2 can also be interpreted by
comparing, within an equilibrium, the demand of agents, who differ only in the size of their
respective background risks. Proposition 2 suggests that agents with higher background
risk will adjust their demand functions by buying state-contingent claims on high-price
traded states and selling claims on low-price traded states. This is illustrated in Franke,
Stapleton and Subrahmanyam (1998), for an economy in which all agents have the same type
HARA-class utility function, exhibiting declining absolute risk aversion. These functions
are standard risk averse and hence generalized risk averse. In this economy, agents with
high background risk buy options from those with relatively low background risk. The latter
agents sell portfolio insurance to the former with relatively high background risk.

4 Conclusions

The main conclusions regarding the effects of a simple increase in background risk, on the
demand for state-contingent claims and on derived risk aversion, are summarised in Propo-
sitions 1 and 2 of the paper. Proposition 2 provides the necessary and sufficient conditions
for simple increases in background risk to reduce the slope of an agent’s demand function
for state-contingent claims, everywhere (generalized risk aversion). These conditions are
the same as those for standard risk aversion. KEssentially, to guarantee a lower slope at
high [low] prices of state-contingent claims, positive and declining absolute risk aversion
[prudence] is required.

It is interesting to compare this result with that of Kimball (1993). Kimball also considers
a comparative statics question: when does a marginal utility increasing risk raise derived
risk aversion? This set of risks includes those that are non-stochastic and have a negative
mean as well as those of high risk and zero or positive mean. Hence both positive and
declining risk aversion and prudence are required. We restrict ourselves to simple increases
in background risk, but ask the more demanding question about the effect on the demand
curve for state-contingent claims. It turns out that the conditions for generalized risk
aversion are the same as for standard risk aversion.
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Appendix
Proof of Lemma (3)

We have to show that

0V (w)/0s
o' (w) /ow

increases in ¢, if and only if absolute prudence is declining. This term increases in ¢ if the
negative of the term increases in w, since dw/0¢ < 0. In terms of the underlying utility
function, this is the same as showing that the term

Ey[u"(W)A(y)]
Eylu"(W)]

Z(w) =

is increasing in w.

Now consider a marginal increase in w. Then

sen P28 g 5, ()18, (W) A )] — B " (W)L o (W) A ),
02(u) _ ey gy Bl 7))
sen 20 = g — B (" O0) — (W) 22 A
and then it follows that
07(w) _ o oy Bl O0) A
sen 20 = g — By (" 0) — (W) 220l AW) - AG))
where g is defined by
BV
AR A

Hence
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0Z(w)
ow

B, [u" (W)]
By [~ (W)]

= sgn Ey[—u"(W){ —p(W)}HAY) — A®G))]- (10)

Simple increases in background risk imply that

A(y) — A() < [=][2]0, for y < [=][>]5.

It follows that absolute prudence, p(W'), must be declining if sgn 3?—5})") is to be non-negative
for any distribution of y. If p(W) is increasing for some range of W, then there exists a

binomial distribution of y with

Ey [ulll W)]

{m —p(W)}HA(y) —A(9)) <0

for both states, implying 0Z(w)/0w < 0. This establishes necessity of p'(W) < 0.

Sufficiency of declining prudence for sgn agguw) to be non-negative follows from
Ey[u""(W)] .
————= —p(W)}(A(y) — A > 0,Vvy.
(i)~ PWHAL) —AG) > 0.9

Hence, declining absolute prudence is necessary and sufficient. O
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