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Abstract

The Libor Market Model: A Recombining Binomial Tree Methodology

We propose an implementation of the Libor Market Model, adapting the recombining node
methodology of Ho, Stapleton and Subrahmanyam (1995). Initial tests on one-factor and
two-factor versions of the model suggest that the method provides a fast and accurate
approach for the valuation of path dependent interest rate derivatives such as Bermudan-
style swaptions. The lattice based approach illustrated here provides an efficient alternative
to Monte-Carlo simulation implementation of the Libor Market Model.



1 Introduction

The Libor Market Model (LMM) is the most common implementation in practice of the
general Heath, Jarrow and Morton (1990) forward rate approach to the valuation of interest-
rate derivatives. First proposed by Miltersen, Sandmann and Sondermann (1997) (MSS)
and Brace, Gatarek and Musiella (1997) (BGM), the model assumes that the London Inter-
bank Offer Rate (Libor) has a conditional probability distribution which is lognormal. This
paper addresses two problems that arise with the LMM. First, the proof of the continuous-
time LMM is somewhat obscure. Hull (2003), for example simply states the drift of the
forward rates, under the risk-neutral measure, without proof. However, without a knowl-
edge of why the drift is as stated in the model, it is hard to use the model with confidence.
We show here that the drift of the forward rate can be derived very simply from the pricing
of Forward Rate Agreements (FRAs) in a no-arbitrage setting.

Second, multi-factor versions of the LMM are difficult to implement, especially for the pric-
ing of Bermudan-style swaptions. We employ the recombining binomial-tree methodology
of Ho, Stapleton and Subrahmanyam (1995) (HSS) to construct a swaption pricing model,
which does not have to rely on Monte-Carlo simulation or the lower-bound approximations
commonly employed1 As an illustration, we implement a two-factor example of the LMM
and price European-style and fixed tail Bermudan-style swaptions.

The standard Monte-Carlo simulation implementation of the LMM leads to an exploding
tree of forward and spot rates. This is caused by the stochastic drift of the forward rates (see
for example Hull, p.577-80). In our implementation the drift is captured by using conditional
probabilities (of up-moves in the processes) which are time and state dependent. In the
LMM, the drift depends on the forward rate, but since in our methodology the forward
rates do not explode, then neither do the number of conditional probabilities. The main
advantage of such lattice models such as ours is that path-dependent Bermudan-style options
can be valued using an optimal exercise strategy, given the interest-rate process. The main
disadvantage is that the process itself is an approximation to the true process, where the
degree of approximation depends on the fineness of the lattice structure.

The outline of this article is as follows. In section 2, we define the Black model, as it is
applied to the pricing of interest-rate options such as caps/floors and swaptions. We also
derive some preliminary results regarding the drift of forward bond prices under the risk-
neutral measure2. In section 3, we derive a version of the discrete-time LMM, following

1For a recent attempt to survey developments in the application of Monte-Carlo techniques to the pricing
of Bermudan swaptions see Piterbarg (2004/5).

2By risk-neutral measure we mean the measure under which futures prices follow a martingale, where the
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the development in Poon and Stapleton (2005). In this discrete-time model, the drift (i.e.
the change in the expected value) of the T -maturity forward rate can be determined by
pricing a T -maturity forward rate agreement (FRA) and applying an extension of Stein’s
lemma adapted for lognormal variables3. In section 4, we detail how the HSS-Nelson and
Ramaswarmy (1990) methodology can be applied in the case of the multi-factor LMM
by fixing the conditional probabilities in the forward interest-rate process. In section 5, we
apply the model to pricing of bonds, caps and swaptions. Section 6, discusses the calibration
of the model, to cap volatilities and to European-style swaption volatility quotes. In section
7, we report on the performance of the model measured by its ability to reproduce the
Black-model cap prices and swaption prices from Monte-Carlo implementation, as reported
in Andersen (2000).

2 Main Features of Libor Market Models

The LMM is a term-structure model which recovers caplet and floorlet values which are
consistent with the market practice of applying the Black model to price options on interest
rates, defined on a Libor basis. Many market participants build LMMs and use them to
price path-dependent interest-rate derivatives such as Bermudan-style swaptions. The main
assumption of the model is that the forward rate is conditional lognormal under the risk-
neutral measure. Since in the model the drift of the forward rate is stochastic, the Libor is
not unconditional log-normal. If it was, then as in the Black and Karasinski (1991) spot-
rate model, the Black model would not hold for caplets and floorlets, due to the effects of
stochastic discounting4.

The Black model for a caplet is given by:

Definition 1 [The Black Model: Interest-Rate Caplet]

The price of a caplet with maturity T at time t, if the Black model holds is

caplett,T =
A

1 + ft,t+T δ
δ[ft,t+T N(d1) − kN(d2)]Bt,t+T (1)

period length is the reset period for the Libor loans. Typically, this period length will be three or six months.
The theoretical risk-neutral measure often used in the literature is based on a period of infintessimal length.

3See Stein (1973)’s lemma for multivariate normal variables
4Pricing a caplet (floorlet) using the Black-Karasinski model leads to caplet (floorlet) prices which are

less than (greater than) those obtained from the Black model.
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where

d1 =
ln(ft,t+T

k ) + σ(T )2T/2
σ(T )

√
T

, d2 = d1 − σ(T )
√

T

where

A is the principal value of the caplet.

Bt,t+T is the value at t of a zero-coupon bond paying 1 unit of currency at t + T .

δ is the interest-rate reset interval (ex. 3 months) as a proportion of a year.

k is the strike rate of the caplet.

ft,t+T is T -period forward Libor at time t.

σ(T ) is the volatility of T -period Libor.

If this pricing equation holds for all T and for all strike rates, k, we say that the Black
model holds for caplets 5 .

The Libor Market Model is a model of the stochastic evolution of interest rates that is
consistent with the above formula holding for all caplets, with maturities T = 1, 2, ..., N and
all strike rates k. The model allows other interest-rate dependent contingent claims, such
as European-style and Bermudan-style swaptions, to be priced in a way that is consistent
with the pricing of the caplets.

The derivation of the LMM uses many of the concepts that are standard in financial theory.
In particular, it uses the ideas of the risk-neutral measure, forward parity, and no-arbitrage
asset pricing relationships. These ideas are well documented in texts such as Pliska (1997)
and Poon and Stapleton (2005). For convenience, we re-state the most important results
here. Since we will be concerned with the pricing of zero-coupon bonds, the relevant ideas
concern zero-dividend paying assets. We have the following results.

For a zero-dividend paying asset:
5However, caplets are often quoted in the market by solving equation (1) for σ(T, k), for different forward

maturities T and strike prices k. In this case it is being used merely as a quotation system.
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1. The no-arbitrage spot asset price is given by6

St = Bt,t+1Et[Bt+1,t+2Et+1[Bt+2,t+3[....Et+T−1[Bt+T−1,t+T ST ]]]],

where the expectation is taken under the period-by-period risk-neutral measure.

2. The T -period forward price of the asset is given by

Ft,t+T = St/Bt,t+T

3. The expected one-period-ahead forward price of the asset is7

Et(Ft+1,t+T ) = Ft,t+T − covt(Ft+1,t+T , Bt+1,t+T )
Bt,t+1

Bt,t+T
.

Since forward rates are closely related to forward prices of zero-coupon bonds, and since we
will be interested in the drift of forward rates, we now apply these results to price forward
contracts on zero-coupon bonds. In the case of zero-coupon bonds we have the following
result:

Lemma 1 (Poon and Stapleton (2005), ch 7) When expectations are taken under the
risk-neutral measure:

1. The drift of the T -period forward price of a one-period maturity zero-coupon bond is

Et(Bt+1,t+T,t+T+1) − Bt,t+T,t+T+1 =
Bt,t+1

Bt,t+T
covt(Bt+1,t+T,t+T+1, Bt+1,t+T )

2. The one-period ahead forward price of a long maturity bond is:

Bt,t+1,t+T = Et(Bt+1,t+2Bt+1,t+2,t+T ),

where Bt,t+τ,t+T is the τ period forward price of a bond with maturity date t + T .

Lemma 1 would be directly useful if we were building a stochastic process of forward bond
prices. It shows how the drift of the forward price depends upon the covarariance of the
forward prices. However, the LMM is a model of forward rates. In this case, a similar
effect of covariances determines the drift of forward rates. In the following section, we use
a corollary of the above lemma in the analysis of the forward rate drift.

6See, for example Pliska (1997), chapter 2
7This follows from taking expectations and using the definition of covariance.
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3 The Libor Market Model

In this section we derive a discrete-time version of the Brace, Gatarek and Musiela (1997)
LMM. The analysis closely follows that in Poon and Stapleton (2005), chapter 7. The Libor
Market Model is constructed by forming a process for the evolution of the forward rates
for all maturities up to a given teminal date. Perhaps the most important element of the
LMM is the drift of the forward Libor over any period. Here we show that the drift can
be determined from the pricing of forward rate agreements (FRAs). By definition FRAs
have a zero value when issued and this valuation can be used to determine the drift of the
forward rate.

We begin the derivation of the LMM by defining the following standard contract: A Forward
Rate Agreement (FRA) on Libor, with maturity T , has a payoff

(ft+T,t+T − k)δ
1 + ft+T,t+T δ

, at date t + T,

where ft+T,t+T is the spot Libor at time t + T . Note that the definition assumes that the
contract is settled at time t + T on a discounted basis at time t. Here we assume, for
simplicity, that δ is a constant. In practice, the precise payoff depends on the day count.
Hence, the above contract can be thought of as a theoretical, or idealised FRA. We now
have the following result:

FRA Pricing and the Drift of the Forward rate

We begin by stating the following corollary of Lemma 1: From forward parity, the one-period
ahead forward price of a one-period bond is

Bt,t+1,t+2 = Et(Bt+1,t+2),

or, in terms of forward rates

Et

(
1

1 + ft+1,t+1δ

)
=

1
1 + ft,t+1δ

.

Now we use this relationship to price a one-period FRA. Since the FRA must have a zero
value when struck at the forward rate:

Et

[
(ft+1,t+1 − ft,t+1) δ

1 + ft+1,t+1δ

]
= 0,
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where expectations are taken under the risk-neutral measure. It then follows that

Et

(
ft+1,t+1

1 + ft+1,t+1δ

)
=

ft,t+1

1 + ft,t+1δ
.

Further, using the definition of covariance we have

Et(ft+1,t+1) − ft,t+1 = −cov

(
ft+1,t+1,

1
1 + ft+1,t+1δ

)
(1 + ft,t+1δ). ≥ 0

The difference between the expected forward rate at t + 1 and the forward rate at t, i.e.
the drift of the forward rate over the first period, depends on the covariance of the rate
with the bond price. In the case of the two period forward rate we have a similar, but more
complicated result, which we state in the following result.

For small changes, dx
x = d lnx + k, and

cov (· · ·) = cov

[
ln ft+1,t+2, ln

(
1

1 + ft+1,t+2δ

1
1 + ft+1,t+1δ

)]
ft,t+2

(1 + ft,t+1δ) (1 + ft,t+2δ)

Hence

Et [ft+1,t+2] − ft,t+2

= −cov

[
ln ft+1,t+2, ln

(
1

1 + ft+1,t+2δ

1
1 + ft+1,t+1δ

)]
ft,t+2

= −cov

[
ln ft+1,t+2, ln

(
1

1 + ft+1,t+2δ

)]
ft,t+2 − cov

[
ln ft+1,t+2, ln

(
1

1 + ft+1,t+1δ

)]
ft,t+2

This shows that the drift of the two period ahead forward rate depends on the two covariance
terms. We now evaluate these covariance terms using a well known property of normally
distributed variables. Applying an extension of Stein’s Lemma for lognormal variables, we

Hence,

cov

[
ln ft+1,t+T , ln

(
1

1 + ft+1,t+τδ

)]
= E

(
−ft+1,t+τδ

1 + ft+1,t+τδ

)
cov(ln ft+1,t+T , ln ft+1,t+τ )

=

(
−ft,t+τδ

1 + ft,t+τδ

)
σT,τ ,
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where, assuming now that covariances are independent of time t,

cov(ln ft+1,t+1+T , ln ft+1,t+1+τ ) ≡ σT−1,τ−1.

Stein’s lemma, applied above to the case of lognormal variables, provides the key to evaluat-
ing the covariance terms that determine the drift of the forward rates. It turns covariances
in to logarithmic covariances. We now state the drift terms, in the general case, assuming
first for simplicity that δ = 1. We have, given Stein’s Lemma, for small changes in forward
rates

ft,t+2 = Et [ft+1,t+2] − ft,t+2
ft,t+2

1 + ft,t+2δ
σ1,1 − ft,t+2

ft,t+1

1 + ft,t+1δ
σ0,1

which states that the drift is dependent, as in HJM, on a series of discounted covariances.
We are now in a position to state the drift in the BGM version of the LMM. First we make
an additional assumption. We assume that the covariances (of the logarithms of the forward
rates) depend only on the maturity of the forward rates, i.e. they are not time dependent.
We then can establish:

Proposition 1 The BGM Model

Given intertemporal stability of the covariances, if the period length t to t+1 is also δ years,
then the drift of the forward Libor is

E [ft+1,t+T ]−ft,t+T = ft,t+T
δft,t+T

1 + δft,t+T
σT−1,T−1+ft,t+T−1

δft,t+T

1 + δft,t+T−1
σT−2,T−1+· · · (2)

In the LMM, the drift of the forward rate at a point in time depends upon the level of
the rate. It also depends on the sum of a series of discounted covariances. Since, the drift
depends on the forward rate, it is stochastic. This is the property that causes the problem in
implementing the model. The stochastic drift can be handled by a Monte-Carlo simulation.
But, to avoid this brute force approach we show in the following section that we can model
the stochastic drift using adjusted conditional probabilities.
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4 The HSS Recombining Node Methodology and the Libor
Market Model

Ho, Stapleton and Subrahmanyam (1995) [HSS] suggest a general methodology for cre-
ating a recombining multi-variate binomial tree to approximate a multi-variate lognormal
process. An adaptation of this methodology has been used by Peterson, Stapleton and
Subrahmanyam (2003) [PSS] to build a two-factor spot rate model of the term-structure.
In this section we show how a similar application can be made in the case of the LMM.
There are some differences in this case however. First, we will assume in this version of the
LMM that the stochastic factors driving the term structure are independent log-Brownian
motions. Hence, there is no mean reversion or correlation in the factors. The covariances
between forward rates are generated by factor loadings on the factors.

We assume a given term structure of forward Libors, f0,T , T = 0, 1, ..., N , where N is the
terminal date of the model and a corresponding set of caplet volatilities, σ(T ) T = 1, ..., N .
From these caplet volatilities we derive a set on N forward volatilities, using the bootstrap
method, assuming that the forward rate volatilities depend on the forward maturity, T , and
not on time t. We denote these as σT . As in Hull and White (2000), we now assume these
volatilities are generated by a two-factor model, with factor loadings: β1,T , β2,T , where

βi,T = αi,TσT+1, T = 0, 1, ..., N − 1.

In the two-factor model, the exogenous factors, αi,T are restricted by the relation

α2
1,T + α2

2,T = 1,

and 0 < α1,T < 1. The covariance between any two forward rates is then given by

στ,T = β1,τβ1,T + β2,τβ2,T . (3)

For convenience, we denote the part of this covariance generated by factor i as στ,T (i) =
βi,τβi,T .

In HSS, a binomial process is used to approximate a stock-price process with a given volatil-
ity and drift structure. Here we use a similar methodology, applying it to each of the factors
which generate the forward rates. We first split the drift of the forward rate into two parts:
a drift which is due to the volatility of the first factor and a drift which is due to the
volatility of the second factor. Since στ,T = στ,T (1) + στ,T (2), the drift in equation (2) can
be written

E [ft+1,t+T ] − ft,t+T = ft,t+T
δft,t+T

1 + δft,t+T
[σT−1,T−1(1) + σT−1,T−1(2)]
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+ ft,t+T−1
δft,t+T

1 + δft,t+T−1
[σT−2,T−1(1) + σT−2,T−1(2)]

+ · · ·

and therefore

E [ft+1,t+T ] − ft,t+T = ft,t+T
δft,t+T

1 + δft,t+T
σT−1,T−1(1) + ft,t+T−1

δft,t+T

1 + δft,t+T−1
σT−2,T−1(1) + · · ·

+ ft,t+T
δft,t+T

1 + δft,t+T
σT−1,T−1(2) + ft,t+T−1

δft,t+T

1 + δft,t+T−1
σT−2,T−1(2) + · · ·

A straightforward implementation of the LMM would build a non-recombining binomial tree
for each factor, using the factor loadings βi,T and the drifts above. The resulting bivariate
tree would have an exploding number of nodes, but could be used to value interest-rate
options using Monte-Carlo analysis. As an alternative, we build a recombining binomial
tree for each factor using the techniques in HSS and Nelson and Ramaswamy (1990) and
then capture the required drift by using state dependent conditional probabilities.

First, we denote the proportionate up and down movements in the log-binomial process due
to factor i = 1, 2 as u(T )(i) and d(T )(i) respectively, for the forward rate with maturity
T , where the up and down moves of the processes depend only on the maturity of the
forward, T , and not on the time t. The T -period forward rate at time t, in state r, s, [after
r down-moves in factor 1 and s down-moves in factor 2] is given by

ft,t+T,r,s = f0,t+T [uT (1)]t−r [dT (1)]r [uT (2)]t−s[dT (2)]s (4)

where
dT (i) =

2

1 + e2βi,T

√
δ

uT (i) = 2 − dT (i),

for
t = 1, 2, ..., N

T = 0, 1, ..., N − t.

Choosing the proportionate up and down moves, u and d, in this way ensures that the
annualised volatility of the T th forward is exactly σT , in the case where all probabilities in
the tree are8 0.5. Also the tree of forward rates is recombining with (t + 1)2 nodes at time
t.

8If all the conditional probabilities are 0.5, the binomial process has a volatility exactly equal to σT .
However, when corrected to account for the drift, the probabilities will diverge from 0.5 and the volatility
of the binomial process will understate that of the true process.
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In Figure 1 we illustrate the recombining tree for the two-factor case. In this example,
the volatility of the first factor declines over time, while the second factor has constant
volatility. Note that, as in HSS, the tree is forced to recombine, in spite of the fact that the
volatility of the first factor declines over time. The transition probabilities depend both on
volatility structure and the drifts of the factors. For example, the conditional probability
at time 1 of the two-period forward moving up at node (0,0), due to factor 1, is denoted as
q1,2,0,0(1). In general for factor i, at time t in state (r, s) this is denoted as qt,t+T,r,s(i).

In order to fix the conditional probabilities in the binomial process, using the HSS method-
ology, we need to determine the drift of the logarithm of the forward rates. In HSS Theorem
1, it is shown that the binomial process converges to the required lognormal process if the
conditional probabilities are chosen using the logarithmic regression of prices on previous
prices. Here we follow the same logic, based on the logarithm of forward rates. Dividing
the drift equation by ft,t+T ,

E [ft+1,t+T ] − ft,t+T

ft,t+T
=

E [∆ft,t+T ]
ft,t+T

=
δft,t+T

1 + δft,t+T
σT−1,T−1 + ft,t+T−1

δft,t+T

1 + δft,t+T−1
σT−2,T−1 + · · ·

Then, for small changes, using Ito’s lemma

E [d ln ft,t+T ]
ft,t+T

=
E [dft,t+T ]

ft,t+T
− σT,T

2

=
δft,t+T

1 + δft,t+T
σT−1,T−1 + ft,t+T−1

δft,t+T

1 + δft,t+T−1
σT−2,T−1 + · · · − σT,T

2
,(5)

where σT,T = σ2
T is the variance of the T th forward rate.

In the HSS binomial tree, the conditional probability of an up move in the T -maturity
forward due to factor i, at time t at node r, s is

qt,t+T,r,s(i) = [mt,t+T,r,s(i) + (t − r) lnuT+1(i) + r ln dT+1(i) − (t − r) lnuT (i) − r ln dT (i)
− ln dT (i)]/[ln uT (i) − ln dT (i)], (6)

where mt,t+T,r,s(i) is the annualised logarithmic drift of factor i, and δ is the length of the
period t to t+1. The drift of the forward rate in equation (5) can now be allocated between
the two factors, choosing

mt,t+T,r,s(i) =
δft,t+T

1 + δft,t+T
σT−1,T−1(i) + ft,t+T−1

δft,t+T

1 + δft,t+T−1
σT−2,T−1(i) + · · · − σT,T (i)

2
,
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where σT,T (1) + σT,T (2) = σT,T .

This completes the description of the HSS application for the case where there is just one
up or down move, for each factor, over each period of length δ. However, the general
HSS methodology allows for an increase in the binomial density, n, (the number of up or
down moves per period). When n 6= 1 the above formula generalises as in HSS. Also, as n
increases, the variance of the forward rate process converges to the given volatilities. This
follows from HSS, Theorem 1.

5 The Pricing of Derivatives in the LMM

In this section we describe the way various interest-rate derivatives are priced using the
LMM. The important derivative products are interest-rate caps and floors, and European-
style and Bermudan-style swaptions.

5.1 The Price of Caplets in the LMM

In this section we present a first test of the HSS procedure described above. Since the LMM
is a process for interest rates (spot and forward) which is consistent with the Black model
pricing of caplets, a good first test of our HSS approximation process for the forward rates
is to examine how close are the caplet prices to the Black-model prices.

The payoff at time τ , on a European-style caplet with maturity τ , at node (r, s) (after r
down-moves of the process for factor 1 and s down-moves of the process for factor 2) is
defined as

capτ,τ,r,s = max[fτ,τ,r,s − k, 0]δ
1

1 + fτ,τ,r,sδ
.

We price the caplet by discounting back through the tree of states, using the appropriate
conditional probabilities to compute the expected payoff on the caplet one period hence.
In the two-factor, n = 1 version of the model, the probability of the τ -period forward rate
moving from state (r, s) at time t to state (r, s) at time t + 1 is

qt,τ,r,s(1)qt,τ,r,s(2).

[1 − qt,τ,r,s(1)]qt,τ,r,s(2)
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is the probability of moving to state (r + 1, s), and so on. The value of the caplet at time t
in state (r, s) is therefore

capτ,t,r,s = {qt,τ,r,s(1)qt,τ,r,s(2)capτ,t+1,r,s

+ qt,τ,r,s(1)[1 − qt,τ,r,s(2)]capτ,t+1,r,s+1

+ [1 − qt,τ,r,s(1)]qt,τ,r,s(2)capτ,t+1,r+1,s

+ [1 − qt,τ,r,s(1)][1 − qt,τ,r,s(2)]capτ,t+1,r+1,s+1}
[

1
1 + ft,t,r,sδ

]

where the discounting is at the time t spot rate, ft, t.

In Table 1, we report caplet prices for a vanilla case where δ = 0.25, the forward rate curve
at t = 0 is flat 5%, and the caplet volatility structure is flat 20%. Caplet prices are shown
for strike rates k = 5%, 6%. The model prices come from computing the LMM over 20
periods (5 years). We first price the caplets using the Black model with implied volatilities
of 20% for all the options, using equation (1). These are shown in columns 1 and 4 of the
Table. In columns 3 and 6 of the Table we show the model prices for the one-factor case
(where α1,1 = 1. These show significant mis-pricing for short maturities Then in columns 2
and 5 we report similar prices for the two-factor case. In the case of the two-factor model,
the allocation constants are a1,0 = 0.8 and b = 0.7. It is clear from the table that in most
cases (excluding the very short term caplets in the one-factor case) the pricing of the caplets
is consistent with the Black model. This confirms that the drift factors and probabilities
are correct.

We now look at the pricing errors as the binomial density, n is increased. In Table 3, we
again compare the LMM caplet prices with the Black model prices. This time we choose
parameter values: δ = 0.5, the forward rate curve at t = 0 is flat 6%, and the caplet
volatility structure is flat 20%. Caplet prices are shown for strike rates 6%. Column 2
shows the Black prices. Columns 3 and 4 show

5.2 Swaption Pricing

One of the most important interest-rate options to price is the option to enter an interest-
rate swap, or swaption. The payoff on a European-style swaption, with strike rate k, is the
value of entering a swap with final maturity date, sm, on the option maturity date τ . The
cash flows on a pay-fixed swaption are shown below.
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0 τ

option maturity swap maturityreset date reset date
↓ ↓ ↓ ↓

↑ ↑ ↑
...τ + δ τ + 2δ sm

(fτ,τ − k)δ (fτ+δ,τ+δ − k)δ (fsm−δ,sm−δ − k)δ

Let
ν =

sm − τ

δ
be the number of FRAs in the swap. Index these i = 0, 1, ..., ν − 1. Then the ith FRA
pays (fτ+iδ − k)δ at time τ + iδ + 1. We value the right to enter the swap at τ by valuing
the individual FRAs in the swap. These in turn are valued by reversing the FRA at times
τ + iδ. The value of the i-th FRA, at time τ , is the given by:

fk(τ, iδ) = (fτ+iδ − k)δ
1

1 + fτ,τδ

1
1 + fτ,τ+δδ

....
1

1 + fτ,τ+iδδ
.

Here, the reversed payoff on the FRA is discounted back to time τ using the forward rates
at time τ . The value of the swap at τ is the sum of the value of the FRAs. This is

sk(τ, sm) =
∑

fk(τ, iδ).

Finally, the payoff on the swaption at τ is

swn(τ, sm) = max[
∑

fk(τ, iδ), 0].

In Table 2 we show results from using a one-factor version of the model to price European-
style and ‘fixed-tail’ Bermudan-style swaptions. The results are directly comparable with
those recorded from the LMM, as reported in Anderson (2000). As in Andersen (2000), the
Bermudan-style swaptions have a ‘lockout period’ shown in column four of the table. The
prices of the European-style swaptions are very close to those quoted in Andersen (2000),
except for the very short maturity options. This is explained by the small number of nodes
in the binomial version. In the two cases that can be compared, the HSS-binomial model
overprices the Bermudan-style swaptions by a small number (three) of basis points. There
are two possible explanations of this excess. First, since the Anderson estimates are lower
bounds, it could be that the HSS-binomial prices are the correct ones. However, a more
likely explanation is that again the binomial approximation. In this case the HSS-binomial
method could be biased upwards. At each node the exercise strategy chooses the highest
priced option and if some of these are overpriced due to the binomial density, then these
will tend to be chosen. This bias can be reduced by increasing the binomial density.
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Figure 1
A Recombining Binomial-Tree: Two Factors Case
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Notes:

1. The figure illustrates the HSS process for the forward rate maturing at date 2, over
the period from time 0 to time 2.

2. The two-factor model produces 4 nodes at t = 1, 9 nodes at t = 2, and in general
(t + 1)2 at time t. The lattice recombines in two dimensions.

3. The volatility of the first factor is σ1(1) = 5, σ2(1) = 4.

4. The volatility of the second factor is σ1(2) = 3, σ2(2) = 3.
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Table 1: Caplet Prices: Black, One-Factor and Two-Factor Models

5% Strike 6% Strike
maturity (1) Black (2) 2-factor (3) 1-factor (4) Black (5) 2-factor (6) 1-factor

1 0.00049 0.00049 0.00061 0.00002 0.00000 0.00000
2 0.00069 0.00067 0.00063 0.00009 0.00009 0.00003
3 0.00083 0.00082 0.00089 0.00017 0.00017 0.00019
4 0.00095 0.00093 0.00092 0.00025 0.00025 0.00019
5 0.00104 0.00103 0.00108 0.00033 0.00032 0.00036
6 0.00113 0.00111 0.00112 0.00041 0.00039 0.00037
7 0.00120 0.00119 0.00122 0.00048 0.00046 0.00050
8 0.00127 0.00125 0.00125 0.00055 0.00052 0.00052
9 0.00133 0.00131 0.00134 0.00061 0.00058 0.00062

1. Caplets assume δ = 0.25.

2. Assumes volatility is 20%, the forward curve is flat 5%.

Table 2: Swaption Prices (basis points): One-Factor Model

European Bermudan
option maturity swap end price lockout swap price

1 4 115 (122) 1 4 161 (158)
2 4 111 (111) 2 4 125
3 4 67 (66) 3 4 70
2 5 162 (162) 2 5 191 (188)
3 5 130 (128) 3 5 139
4 5 73 (72) 4 5 74

1. All options are on δ = 0.5 reset swaps. Strike price is 6%, volatility is 20%, the forward curve
is flat 6%.

2. The prices can be compared with those shown in Andersen (2000), Table 1. These prices are
shown in brackets.
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Table 3 
                  A Comparison of the HSS-LMM Caplet Prices with the Black Model  
 
 

 
 Black n=2 n = 1 

Black-
(n=1) 

Black-
(n=2) Richardson 

Black - 
Richardson 

1 0.001594 0.001479 0.001986 -0.00039 0.00012 0.00097 0.00062 

2 0.002187 0.002146 0.002063 0.00012 0.00000 0.00223 -0.00004 

3 0.002598 0.002595 0.002789 -0.00019 0.00000 0.00240 0.00020 

4 0.00291 0.002929 0.002897 0.00001 -0.00002 0.00296 -0.00005 

5 0.003156 0.003187 0.003263 -0.00011 -0.00003 0.00311 0.00004 

6 0.003354 0.003391 0.003388 -0.00003 -0.00004 0.00339 -0.00004 

7 0.003515 0.003553 0.003562 -0.00005 -0.00004 0.00354 -0.00003 

8 0.003645 0.003681 0.003697 -0.00005 -0.00004 0.00366 -0.00002 

9 0.00375 0.00378 0.003748 0.00000 -0.00003 0.00381 -0.00006 

10 0.003835 0.003857 0.003887 -0.00005 -0.00002 0.00383 0.00001 

11 0.003901 0.003913 0.003852 0.00005 -0.00001 0.00397 -0.00007 

12 0.003953 0.003951 0.003992 -0.00004 0.00000 0.00391 0.00004 
 
 
 
 



    Table 4: Recombining Tree of Forward Rates: Transition Probabilities 
f_0_0_0_0 0.050                 f_3_3_0_0 0.075 
f_0_1_0_0 0.050 0.501 0.500   f_1_1_0_0 0.057             
f_0_2_0_0 0.050 0.502 0.500   f_1_2_0_0 0.057 0.461 0.564   f_2_2_0_0 0.065     f_3_3_0_1 0.066 
f_0_3_0_0 0.050 0.503 0.500   f_1_3_0_0 0.057 0.435 0.567   f_2_3_0_0 0.066 0.422 0.627     
                  f_3_3_0_2 0.059 
      f_1_1_0_1 0.051     f_2_2_0_1 0.058       
      f_1_2_0_1 0.050 0.461 0.428   f_2_3_0_1 0.057 0.422 0.491   f_3_3_0_3 0.052 
      f_1_3_0_1 0.049 0.434 0.423           
            f_2_2_0_2 0.052     f_3_3_1_0 0.064 
      f_1_1_1_0 0.049     f_2_3_0_2 0.050 0.422 0.355     
      f_1_2_1_0 0.050 0.547 0.564         f_3_3_1_1 0.057 
      f_1_3_1_0 0.051 0.579 0.567   f_2_2_1_0 0.056       
            f_2_3_1_0 0.057 0.507 0.627   f_3_3_1_2 0.050 
      f_1_1_1_1 0.043             
      f_1_2_1_1 0.043 0.547 0.428   f_2_2_1_1 0.050     f_3_3_1_3 0.045 
      f_1_3_1_1 0.043 0.579 0.423   f_2_3_1_1 0.050 0.507 0.491     
                  f_3_3_2_0 0.054 
            f_2_2_1_2 0.044       
            f_2_3_1_2 0.043 0.507 0.355   f_3_3_2_1 0.048 
                    
            f_2_2_2_0 0.048     f_3_3_2_2 0.043 
            f_2_3_2_0 0.049 0.593 0.627     
                  f_3_3_2_3 0.038 
            f_2_2_2_1 0.042       
            f_2_3_2_1 0.043 0.593 0.491   f_3_3_3_0 0.046 
                    
            f_2_2_2_2 0.037     f_3_3_3_1 0.041 
            f_2_3_2_2 0.037 0.592 0.355     
                  f_3_3_3_2 0.036 
                    
                  f_3_3_3_3 0.032 




